Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T14:42:05.421Z Has data issue: false hasContentIssue false

Effects of geometric confinement in quasi-2-D turbulent Rayleigh–Bénard convection

Published online by Cambridge University Press:  06 April 2016

Shi-Di Huang
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
Ke-Qing Xia*
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
*
Email address for correspondence: [email protected]

Abstract

We report an experimental study of confinement effects in quasi-2-D turbulent Rayleigh–Bénard convection. The experiments were conducted in five rectangular cells with their height $H$ and length $L$ being the same and fixed, while the width $W$ was different for each cell to produce lateral aspect ratios (${\it\Gamma}=W/H$) of 0.6, 0.3, 0.2, 0.15 and 0.1. Direct flow field measurements reveal that the large-scale flow slows down as ${\it\Gamma}$ decreases and there are more plumes travelling through the bulk region. Moreover, the reversal frequency of the large-scale flow is found to increase drastically in smaller ${\it\Gamma}$ cells, by more than 1000-fold for the highest value of Rayleigh number reached in the experiment. The reversal frequency can be well described by a stochastic model developed by Ni et al. (J. Fluid Mech., vol. 778, 2015, R5) and the probability density functions (PDF) of the time interval between successive reversals are found to follow Poisson statistics as in the 3-D system. It is further observed that the bulk temperature fluctuation increases significantly and its PDF changes from exponential to Gaussian as ${\it\Gamma}$ decreases. The influences of geometric confinement on the global heat transport are also investigated. The measured NuRa relationship suggests that, as the lateral aspect ratio decreases, the relative weight of the boundary layer contribution in the global heat transport increases compared to that from the bulk. These results demonstrate that in the quasi-2-D geometry, geometric confinement has strong effects on both the global and local properties in turbulent convective flows, which are very different from the previous findings in 3-D and true 2-D systems.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
Bailon-Cuba, J., Emran, M. S. & Schumacher, J. 2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.Google Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 2007, P10005.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Kadanoff, L. P., Libchaber, A. & Heslot, F. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Chandra, M. & Verma, M. K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503.CrossRefGoogle ScholarPubMed
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.Google Scholar
Ching, E. S. C. & Tam, W. S. 2006 Aspect-ratio dependence of heat transport by turbulent Rayleigh–Bénard convection. J. Turbul. 7, N72.Google Scholar
Chong, K.-L., Huang, S.-D., Kaczorowski, M. & Xia, K.-Q. 2015 Condensation of coherent structures in turbulent flows. Phys. Rev. Lett. 115, 264503.Google Scholar
Daya, Z. A. & Ecke, R. E. 2001 Does turbulent convection feel the shape of the container? Phys. Rev. Lett. 87, 184501.Google Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2003 On geometry effects in Rayleigh–Bénard convection. J. Fluid Mech. 486, 105114.Google Scholar
Heslot, F., Castaing, B. & Libchaber, A. 1987 Transitions to turbulence in helium gas. Phys. Rev. A 36, 58705873.CrossRefGoogle ScholarPubMed
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.Google Scholar
Huang, Y.-X. & Zhou, Q. 2013 Counter-gradient heat transport in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 737, R3.Google Scholar
Kaczorowski, M., Chong, K.-L. & Xia, K.-Q. 2014 Turbulent flow in the bulk of Rayleigh–Bénard convection: aspect-ratio dependence of the small-scale properties. J. Fluid Mech. 747, 73102.Google Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.Google Scholar
Massaioli, F., Benzi, R. & Succi, S. 1993 Exponential tails in two-dimensional Rayleigh–Bénard convection. Europhys. Lett. 21, 305310.CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.Google Scholar
Niemela, J. J. & Sreenivasan, K. R. 2006 Turbulent convection at high Rayleigh numbers and aspect ratio 4. J. Fluid Mech. 557, 411422.Google Scholar
Nikolaenko, A., Brown, E., Funfschilling, D. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less. J. Fluid Mech. 523, 251260.Google Scholar
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.Google Scholar
van der Poel, E. P., Stevens, R. J. A. M. & Lohse, D. 2011 Connecting flow structures and heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 84, 045303.Google ScholarPubMed
van der Poel, E. P., Stevens, R. J. A. M. & Lohse, D. 2013 Comparison between two-and three-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 736, 177194.Google Scholar
van der Poel, E. P., Stevens, R. J. A. M., Sugiyama, K. & Lohse, D. 2012 Flow states in two-dimensional Rayleigh–Bénard convection as a function of aspect-ratio and Rayleigh number. Phys. Fluids 24, 085104.Google Scholar
du Puits, R., Resagk, C. & Thess, A. 2007 Breakdown of wind in turbulent thermal convection. Phys. Rev. E 75, 016302.Google Scholar
Qiu, X.-L. & Xia, K.-Q. 1998b Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58, 486491.Google Scholar
Roche, P., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.Google Scholar
Song, H. & Tong, P. 2010 Scaling laws in turbulent Rayleigh–Bénard convection under different geometry. Europhys. Lett. 90, 44001.CrossRefGoogle Scholar
Song, H., Brown, E., Hawkins, R. & Tong, P. 2014 Dynamics of large-scale circulation of turbulent thermal convection in a horizontal cylinder. J. Fluid Mech. 740, 136167.Google Scholar
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.Google ScholarPubMed
Sugiyama, K., Ni, R., Stevens, R. J. A. M., Chan, T. S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.CrossRefGoogle ScholarPubMed
Sun, C., Ren, L.-Y., Song, H. & Xia, K.-Q. 2005a Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J. Fluid Mech. 542, 165174.Google Scholar
Sun, C., Xia, K.-Q. & Tong, P. 2005b Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.Google Scholar
Vasilev, A. Yu. & Frick, P. G. 2011 Reversals of large-scale circulation in turbulent convection in rectangular cavities. J. Expl Theor. Phys. Lett. 93, 330334.Google Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25, 085110.CrossRefGoogle Scholar
Wei, P., Ni, R. & Xia, K.-Q. 2012 Enhanced and reduced heat transport in turbulent thermal convection with polymer additives. Phys. Rev. E 86, 016325.Google ScholarPubMed
Wu, X.-Z. & Libchaber, A. 1992 Scaling relations in thermal turbulence: the aspect-ratio dependence. Phys. Rev. A 45, 842845.Google Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307.Google Scholar
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3, 052001.Google Scholar
Xia, K.-Q. & Lui, S.-L. 1997 Turbulent thermal convection with an obstructed sidewall. Phys. Rev. Lett. 79, 50065009.CrossRefGoogle Scholar
Xia, K.-Q., Sun, C. & Cheung, Y.-H. 2008 Large scale velocity structures in turbulent thermal convection with widely varying aspect ratio. In Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics.Google Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.Google ScholarPubMed
Zhou, Q., Liu, B.-F., Li, C.-M. & Zhong, B.-C. 2012 Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells. J. Fluid Mech. 710, 260276.Google Scholar