Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T05:41:15.274Z Has data issue: false hasContentIssue false

The effect of weak inertia on flow through a porous medium

Published online by Cambridge University Press:  26 April 2006

C. C. Mei
Affiliation:
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
J.-L. Auriault
Affiliation:
Institut de Mécanique de Grenoble, B.P. 53, Grenoble, France

Abstract

Using the theory of homogenization we examine the correction to Darcy's law due to weak convective inertia of the pore fluid. General formulae are derived for all constitutive coefficients that can be calculated by numerical solution of certain canonical cell problems. For isotropic and homogeneous media the correction term is found to be cubic in the seepage velocity, hence remains small even for Reynolds numbers which are not very small. This implies that inertia, if it is weak, is of greater importance locally than globally. Existing empirical knowledge is qualitatively consistent with our conclusion since the linear law of Darcy is often accurate for moderate flow rates.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. M. & Brenner, H., 1984a Transport processes in spatially periodic capillary networks II, Taylor dispersion with mixing vertices. Physico-chem. Hydrodyn. 5, 269285.Google Scholar
Adler, P. M. & Brenner, H., 1984b Transport processes in spatially periodic capillary networks III, Nonlinear flow problems. Physico-chem. Hydrodyn. 5, 287297.Google Scholar
Auriault, J.-L.: 1980 Dynamic behavior of a porous medium saturated by a Newtonian fluid. Intl J. Engng Sci. 18, 775785.Google Scholar
Auriault, J.-L. & Sanchez-Palencia, E. 1977 Ètude du comportment macroscopique d'un milieu poreux saturé déformable. J. Méc. 16, 575603.Google Scholar
Auriault, J.-L., Borne, L. & Champon, R., 1985 Dynamics of porous saturated media, checking of the generalized law of Darcy. J. Acoust. Soc. Am. 77, 16411650.Google Scholar
Bakhvalov, N. & Panasenko, G., 1989 Homogenization: Averaging Processes in Periodic Media. Kluwer Academic.
Batra, V. K.: 1969 Laminar flow through wavy tubes and wavy channels. Master's thesis, University of Waterloo, Ontario, Canada.
Bear, J.: 1972 Dynamics of Fluids in Porous Media. Elsevier.
Bensoussan, A., Lions, J. L. & Panpanicolaou, G., 1978 Asymptotic Analysis for Periodic Structures. North-Holland.
Brenner, H.: 1964 The Stokes resistance of an arbitrary particle, II – an extension. Chem. Engng Sci. 19, 599629.Google Scholar
Brenner, H.: 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297, 81133.Google Scholar
Brenner, H. & Adler, P. M., 1982 Dispersion resulting from flow through spatially periodic porous media. II. Surface and intraparticle transport. Phil. Trans. R. Soc. Lond. A 307, 149200.Google Scholar
Burridge, R. & Keller, J. B., 1981 Poroelasticity equations derived from microstructures. J. Acoust. Soc. Am. 70, 11401146.Google Scholar
Cvetkovic, V. D.: 1986 A continuum approach to high velocity flow in a porous medium. Transport in Porous Media 1, 6397.Google Scholar
De Wiest, R. (ed.) 1969 Flow Through Porous Media, p. 13ff. Academic.
Dullien, F. A. L.: 1979 Porous Media, Fluid Transport and Pore Structure. Academic.
Ene, H. I. & Sanchez-Palencia, E. 1975 Equations et phénomènes de surface pour 1′écoulement dans un modèle de milieux poreux. J. Méc. 14, 73108.Google Scholar
Forchheimer, P.: 1901 Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45, 17821788.Google Scholar
Forchheimer, P.: 1930 Hydraulik, 3rd edn. Teubner.
Happel, J. & Brenner, H., 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Hannoura, A. A. & Bakends, F., 1981 Non-Drcy flow; a state of the art. In Flow and Transport in Porous Media (ed. A. Veruijt & F. B. J. Banrends). Balkema.
Keller, J. B.: 1980 Darcy's law for flow in porous media and the two-space method. In Nonlinear Partial Differential Equations in Engineering and Applied Science (ed. R. L. Sternberg, A. J. Kalinowski & J. S. Papadakis), pp. 429443.
Dekker, Kovacs G. 1981 Seepage Hydraulics. Elsevier.
Levy, T.: 1979 Propagation of waves in a fluid-saturated porous elastic solid. Intl J. Engng Sci. 17, 10051014.Google Scholar
McCorquodale, J. A., Hannoura, A. & Nasser, M. S., 1978 Hydraulic conductivity of rockflll. J. Hydraulic Res. 2, 123137.Google Scholar
Mei, C. C. & Auriault, J.-L. 1989 Mechanics of heterogeneous porous media with several spatial scales. Proc. R. Soc. Lond. A 426, 391423.Google Scholar
Payatakes, A. C., Tien, C. & Turian, R. M., 1973 Part II. Numerical solution of steady state incompressible Newtonian flow through periodically constricted tubes. AIChE J. 19, 6776.Google Scholar
Rose, H. E.: 1945 On the resistance coefficient-Reynolds number relationship for fluid flow through a bed of granular materials. Proc. Inst. Mech. Kngrs 153, 154168.Google Scholar
Sanchez-Palencia, E.: 1974 Comportement local et macroscopique d'un type de milieux physiques héterogénes. Intl J. Engng Sci. 12, 331351.Google Scholar
Sanchez-Palencia, E.: 1980 Nonhomogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer.
Scheidegger, A. E.: 1974 The Physics of Flow Through Porous Media, 3rd edn. University of Toronto Press.
Zick, A. A. & Homsy, G. M., 1982 Stokes flow through periodic array of spheres. J. Fluid Mech. 115, 1326.Google Scholar
Zunker, F.: 1930 Behavior of soil in connection with water (in German). Handbook of Soil Science, vol. vi. Springer.