Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T06:01:18.166Z Has data issue: false hasContentIssue false

The effect of rigid rotation on the finite-amplitude stability of pipe flow at high Reynolds number

Published online by Cambridge University Press:  20 April 2006

T. R. Akylas
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
J.-P. Demurger
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

A theoretical study is made of the stability of pipe flow with superimposed rigid rotation to finite-amplitude disturbances at high Reynolds number. The non-axisymmetric mode that requires the least amount of rotation for linear instability is considered. An amplitude expansion is developed close to the corresponding neutral stability curve; the appropriate Landau constant is calculated. It is demonstrated that the flow exhibits nonlinear subcritical instability, the nonlinear effects being particularly strong owing to the large magnitude of the Landau constant. These findings support the view that a small amount of extraneous rotation could play a significant role in the transition to turbulence of pipe flow.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhat, W. V. 1966 Ph.D. dissertation, University of Rochester, New York.
Cotton, F. W. & Salwen, H. 1981 J. Fluid Mech. 108, 101.
Davey, A. 1978 J. Fluid Mech. 86, 695.
Davey, A. & Nguyen, H. P. F. 1971 J. Fluid Mech. 45, 701.
Davis, S. H. & Rosenblat, S. 1977 Stud. Appl. Maths 57, 59.
Demurger, J.-P. 1984 S. M. thesis, MIT.
Herbert, T. 1983 J. Fluid Mech. 126, 167.
Itoh, N. 1977 J. Fluid Mech. 82, 469.
Leite, R. J. 1959 J. Fluid Mech. 5, 81.
Mackrodt, P. A. 1976 J. Fluid Mech. 73, 153.
Orszag, S. A. & Patera, A. T. 1983 J. Fluid Mech. 128, 347.
Patera, A. T. & Orszag, S. A. 1981 J. Fluid Mech. 112, 467.
Reynolds, O. 1883 Phil. Trans. R. Soc. Lond. A 174, 935.
Reynolds, W. C. & Potter, M. C. 1967 J. Fluid Mech. 27, 465.
Salwen, H., Cotton, F. W. & Grosch, C. E. 1980 J. Fluid Mech. 98, 273.
Smith, F. T. & Bodonyi, R. J. 1982 Proc. R. Soc. Lond. A 384, 463.
Stuart, J. T. 1960 J. Fluid Mech. 9, 353.
Watson, J. 1960 J. Fluid Mech. 9, 371.