Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T00:38:26.522Z Has data issue: false hasContentIssue false

Effect of a homogeneous magnetic field on the electrospraying characteristics of sulfolane ferrofluids

Published online by Cambridge University Press:  06 November 2017

Aaron Madden
Affiliation:
Mechanical Engineering Department, Yale University, New Haven, CT 06520-8286, USA
Juan Fernandez de la Mora
Affiliation:
Mechanical Engineering Department, Yale University, New Haven, CT 06520-8286, USA
Nirmesh Jain
Affiliation:
Key Centre for Polymers and Colloids, Chemistry Department, The University of Sydney, NSW 2006, Australia
Hadi Sabouri
Affiliation:
Key Centre for Polymers and Colloids, Chemistry Department, The University of Sydney, NSW 2006, Australia
Brian Hawkett
Affiliation:
Key Centre for Polymers and Colloids, Chemistry Department, The University of Sydney, NSW 2006, Australia

Abstract

We explore the effect of an applied homogeneous magnetic field on the electrospraying characteristics of a ferrofluid in the cone-jet mode. A sulfolane-based ferrofluid mixed with the ionic liquid ethyl ammonium nitrate has been synthesized. These mixtures have negligible volatility under ambient conditions and remain stable under a very wide range of electrical conductivities $K$. Magnetized Taylor cones spray with the same current emission characteristics as their non-magnetized counterparts in the shared voltage and flow rate parameter space. However, the magnetized Taylor cones studied remained stable at voltages 23 % lower than the non-magnetized spray; they also access flow rates 30 % and 40 % lower in ferrofluids with $K=0.3$ and $0.01~\text{S}~\text{m}^{-1}$. In the lower voltage ranges available only to magnetized tips, unusually long stable cones are observed. The magnetic stabilization mechanism responsible for these two effects remains unclear. It is noteworthy that these strong effects arise even when the tip curvature of the strictly magnetized liquid is orders of magnitude smaller than that for the strictly electrified liquid.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Matilla, R., Fernandez-Garcia, J., Congdon, H. & Fernandez de la Mora, J. 2014 Search for liquids electrospraying the smallest possible nanodrops in vacuo. J. Appl. Phys. 116 (22), 224504.Google Scholar
Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. Paris 43, L649L654.Google Scholar
Brancher, J. P. & Zouaoui, D. 1987 Equilibrium of a magnetic liquid drop. J. Magnetism & Magnetic Mats 65, 311314.Google Scholar
Bryce, N. S., Pham, B. T. T., Fong, N. W. S., Jain, N., Pan, E. H., Whan, R. M., Hambley, T. W. & Hawkett, B. S. 2013 The composition and end-group functionality of sterically stabilized nanoparticles enhances the effectiveness of co-administered cytotoxins. Biomaterials Sci. 1, 12601272.Google Scholar
Chen, D. R, Pui, D. Y. H. & Kaufman, S. L. 1995 Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1. 8 μm diameter range. J. Aero. Sci. 26 (6), 963977.Google Scholar
Cloupeau, M. & Prunet-Foch, B. 1989 Electrostatic spraying of liquids in cone-jet mode. J. Electrostat. 22, 135159.CrossRefGoogle Scholar
Collins, R., Sambath, K., Harris, M. & Basaran, O. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110, 49054910.Google Scholar
Courtney, D. G., Li, H. Q. & Lozano, P. 2012 Emission measurements from planar arrays of porous ionic liquid ion source. J. Phys. D: Appl. Phys. 45 (48), 485203.Google Scholar
Fernandez de la Mora, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217243.Google Scholar
Fernandez de la Mora, J. & Loscertales, I. G. 1994 The current transmitted through an electrified conical meniscus. J. Fluid Mech. 260, 155184.Google Scholar
Gamero-Castaño, M. 2010 Energy dissipation in electrosprays and the geometric scaling of the transition region of cone-jets. J. Fluid Mech. 662, 493513.Google Scholar
Gollwitzer, C., Matthies, G., Richter, R., Rehberg, I. & Tobiska, L. 2007 The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J. Fluid Mech. 571, 455474.Google Scholar
Higuera, F. J. 2017 Qualitative analysis of the minimum flow rate of a cone-jet of a very polar liquid. J. Fluid Mech. 816, 428441.CrossRefGoogle Scholar
Jain, N., Wang, Y., Hawkett, B. S. & Warr, G. G. 2011 Stable and water-tolerant ionic liquid ferrofluids. ACS Appl. Mater. Interface 3, 662667.CrossRefGoogle ScholarPubMed
Jain, N., Wang, Y., Jones, S. K., Hawkett, B. S. & Warr, G. G. 2010 Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26, 44654472.Google Scholar
King, L. B. 2014 Ferroelectrohydrodynamics of ionic liquid ferrofluid surface instabilities and jets. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Paper No. AIAA-2014-3693, pp. 2830. American Chemical Society.Google Scholar
King, L. B., Meyer, E., Hopkins, M. A., Hawkett, B. S. & Jain, N. 2014 Self-assembling array of magnetoelectrostatic jets from the surface of a superparamagnetic ionic liquid. Langmuir 30 (47), 1414314150.Google Scholar
Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V. & Tobiska, L. 2006 Numerical treatment of free surface problems in ferrohydrodynamics. J. Phys. 18 (38), S2657S2669.Google Scholar
Ramos, A. & Castellanos, A. 1994 Conical points in liquid–liquid interfaces subjected to electric fields. Phys. Lett. A 184, 268272.Google Scholar
Rosell-Llompart, J. & Fernández de la Mora, J. 1994 Generation of monodisperse droplets 0. 3–4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids. J. Aero. Sci. 25, 10931119.Google Scholar
Rowghanian, P., Meinhart, C. D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields’. J. Fluid Mech. 802, 245262.CrossRefGoogle Scholar
Sero-Guillaume, O. E., Zouaoui, D., Bernardin, D. & Brancher, J. P. 1992 The shape of a magnetic liquid drop. J. Fluid Mech. 241, 215232.Google Scholar
Stone, H. A., Lister, J. R. & Brenner, M. P. 1999 Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455 (1981), 329347.Google Scholar
Tang, K. Q. & Gomez, A. 1995 Generation of monodisperse water droplets from electrosprays in a corona-assisted cone-jet mode. J. Colloid Interface Sci. 175 (2), 326332.Google Scholar
Tang, K., Gomez, A. & Fernandez de la Mora, J.1999 Electro-spray using corona assisted cone-jet mode. US Patent 5873523-A.Google Scholar
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.Google Scholar
Uehara, S., Itoga, T. & Nishiyama, H. 2015 Discharge and flow characteristics using magnetic fluid spikes for air pollution control. J. Phys. D 48, 282001.Google Scholar
Wohlhuter, F. K. & Basaran, O. A. 1992 Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 235, 481510.Google Scholar
Supplementary material: File

Madden et al supplementary material

Madden et al supplementary material 1

Download Madden et al supplementary material(File)
File 67.4 KB