Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T04:35:28.306Z Has data issue: false hasContentIssue false

Dynamics of vorticity

Published online by Cambridge University Press:  20 April 2006

P. G. Saffman
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena, California 91125

Abstract

Remarks are made about the status of research on the role of vorticity in fluid dynamics and some unsolved problems of current interest are described.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J. Fluid Mech. 1, 388398.Google Scholar
Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.Google Scholar
Glezer, A. 1981 Ph.D. thesis, California Institute of Technology.
Helmholtz, H. 1867 On integrals of the hydrodynamical equations which express vortex motion. Phil. Mag. 33, 485512.Google Scholar
Kelvin, Lord 1867 On vortex atoms. Phil. Mag. 34, 1524.Google Scholar
Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Leonard, A. 1980 Vortex methods for flow simulation. J. Comput. Phys. (to appear).Google Scholar
Mclean, J. W., Ma, Y. C., Martin, D. U., Saffman, P. G. & Yuen, H. C. 1980 Three-dimensional instability of finite amplitude gravity waves. Phys. Rev. Lett. (subjudice).Google Scholar
Morf, R. H., Orszag, S. A. & Frisch, U. 1980 Spontaneous singularity in three-dimensional, inviscid incompressible flow. Phys. Rev. Lett. 44, 572.Google Scholar
Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Roy. Soc. A 365, 105119.Google Scholar
Oshima, Y. 1978 The game of passing through of a pair of vortex rings. J. Phys. Soc. Japan 45, 660664.Google Scholar
Oshima, Y. & Asaka, S. 1975 Interaction of two vortex rings moving side by side. Nat. Sci. Rep. Ochanomizu Univ. 26, 3137.Google Scholar
Saffman, P. G. & Baker, G. R. 1979 Vortex interactions. Ann. Rev. Fluid Mech. 11, 95122.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1980 Properties of a vortex street of finite vortices. S.I.A.M. Jn. Sci. Stat. Computing (sub Judice).Google Scholar
Saffman, P. G. & Sheffield, J. S. 1977 Flow over a wing with an attached free vortex. Stud. Appl. Math. 57, 107117.Google Scholar
Saffman, P. G. & Szeto, R. 1981 Structure of a linear array of uniform vortices. Stud. Appl. Math. (to appear).Google Scholar
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.Google Scholar
Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. A 158, 499521.Google Scholar
Yamada, H. & Matsui, T. 1978 Preliminary study of mutual slip-through of a pair of vortices. Phys. Fluids 21, 292294.Google Scholar