Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T14:07:40.377Z Has data issue: false hasContentIssue false

Dynamics of drop breakup in inhomogeneous turbulence at various volume fractions

Published online by Cambridge University Press:  26 April 2007

SOPHIE GALINAT
Affiliation:
Laboratoire de Génie Chimique, UMR 5503 CNRS-INP-UPS, 5 rue Paulin Talabot, 31106 Toulouse Cedex 1, France
FRÉDÉRIC RISSO*
Affiliation:
Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS-INP-UPS, Allée C. Soula, 31400 Toulouse, France
OLIVIER MASBERNAT
Affiliation:
Laboratoire de Génie Chimique, UMR 5503 CNRS-INP-UPS, 5 rue Paulin Talabot, 31106 Toulouse Cedex 1, France
PASCAL GUIRAUD
Affiliation:
Laboratoire d'Ingénierie des Procédés de l'Environnement, INSA Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
*
Author to whom correspondence should be addressed: [email protected]

Abstract

We report experimental and numerical determinations of the breakup probability of a drop travelling through inhomogeneous turbulent flow generated in a pipe downstream of a restriction. The model couples the Rayleigh–Lamb theory of drop oscillations with the Kolmogorov–Hinze theory of turbulent breakup. The interface deformation is modelled by a linear oscillator forced by the Lagrangian turbulent Weber number measured in experiments. The interface is assumed to rupture when either (i) the instantaneous Weber number exceeds a critical value or (ii) the predicted deformation exceeds a given threshold. Seven flow configurations have been tested, corresponding to various Reynolds numbers, damping coefficients and drop volume fractions. The history of the drop deformation proves to play an important role, and simulations assuming a critical Weber number fail to reproduce the experiments. Simulations assuming a critical deformation predict well the main features observed in the experiments. The linear oscillator appears able to describe the main feature of the dynamics of the drop deformation in inhomogeneous turbulence. Provided the oscillation frequency and the damping rate are known, the model can be used to compute the breakup probability in concentrated dispersed two-phase flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Augier, F., Masbernat, O. & Guiraud, P. 2003 Slip velocity and drag law in a liquid-liquid homogeneous dispersed flow. AIChE J. 49, 23002316.CrossRefGoogle Scholar
Galinat, S., GarridoTorres, L. Torres, L., Masbernat, O., Guiraud, P., Risso, F., Dalmazzone, C. & Noïk, C. 2007 Break-up of a drop in a liquid-liquid pipe flow through an orifice. AIChE J. 53 (1), 5668.Google Scholar
Galinat, S., Masbernat, O., Guiraud, P., Dalmazzone, C. & Noïk, C. 2005 Drop break-up in turbulent pipe flow downstream of a restriction. Chem. Engng Sci. 60, 6511–6258.CrossRefGoogle Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289295.CrossRefGoogle Scholar
Kang, I. S. & Leal, L. G. 1989 Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number. II. Deformation of a bubble in a biaxial straining flow. Phys. Fluids A 1, 644660.Google Scholar
Kang, I. S. & Leal, L. G. 1990 Bubble dynamics in time-periodic straining flows. J. Fluid Mech. 218, 4169.Google Scholar
Kolmogorov, A. N. 1949 On the disintegration of drops in a turbulent flow. Dokl. Akad. Nauk. SSSR 66, 825828.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lasheras, J. C., Eastwood, C., Martínez-Bazán, C. & Montańs, J. L. 2002 A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Intl J. Multiphase Flow 28, 247278.CrossRefGoogle Scholar
Miller, C. A. & Scriven, L. E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417435.CrossRefGoogle Scholar
O'Rourke, P. J. & Amsden, A. A. 1987 The TAB method for numerical calculation of spray droplet breakup. SAE Technical Paper 872089.Google Scholar
Qian, D., MacLaughlin, J. B., Sankaranarayanan, K., Sundaresan, S. & Kontomaris, K. 2006 Simulation of bubble breakup dynamics in homogeneous turbulence. Chem. Engng Commun. 193, 10381063.CrossRefGoogle Scholar
Revuelta, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C. 2006 Bubble break-up in a straining flow at finite Reynolds numbers. J. Fluid Mech. 551, 175184.Google Scholar
Risso, F. 2000 The mechanisms of deformation and breakup of drops and bubbles. Multiphase Sci. Tech. 12, 150.CrossRefGoogle Scholar
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
Rodríguez-Rodríguez, J., Gordillo, J. M. & Martínez-Bazán, C. 2006 Breakup time and morphology of drops and bubbles in a high-Reynolds-number flow. J. Fluid Mech. 548, 6986.Google Scholar
Ryskin, G. & Leal, L. G 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 3. Bubble deformation in an axisymmetric straining flow. J. Fluid Mech. 148, 3743.CrossRefGoogle Scholar
ShreekumarKumar, R. Kumar, R. & Gandhi, K.S. 1996 Breakage of a drop of inviscid fluid due to a pressure fluctuation at its surface. J. Fluid Mech. 328, 117.Google Scholar