Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T05:17:30.448Z Has data issue: false hasContentIssue false

Dynamic mobility of surfactant-stabilized nano-drops: unifying equilibrium thermodynamics, electrokinetics and Marangoni effects

Published online by Cambridge University Press:  18 May 2020

Reghan J. Hill*
Affiliation:
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, H3A 0C5, Canada
Gbolahan Afuwape
Affiliation:
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, H3A 0C5, Canada
*
Email address for correspondence: [email protected]

Abstract

A theoretical analysis of the dynamic electrophoretic mobility of surfactant-stabilized nano-drops is undertaken. Whereas the theory for rigid spherical nanoparticles is well developed, its application to nano-drops is questionable due to fluid mobility of the interface and of the surfactant molecules adsorbed there. At zero frequency, small drops with surface impurities are well known to behave as rigid spheres due to concentration-gradient-induced Marangoni stresses. However, at the megahertz frequencies of electroacoustic (and other spectral-based) diagnostics, the interfacial concentration gradients are dynamic, coupling electromigration, advection and diffusion fluxes. This study addresses a parameter space that is relevant to anionic-surfactant-stabilized oil–water emulsions, using sodium-dodecylsulfate-stabilized hexadecane as a specific example. The drop size is several hundred nanometres, much larger than the diffuse-layer thickness, thus motivating thin-double-layer approximations. The theory demonstrates that fluid mobility and fluctuating Marangoni stresses can have a profound influence on the magnitude and phase of the dynamic mobility. We show that the drop interface transits from a rigid/immobile one at low frequency to a fluid one at high frequency. The model unifies electrokinetics and equilibrium interfacial thermodynamics. Therefore, with knowledge of how the interfacial tension varies with electrolyte composition (oil, surfactant and added salt concentrations), the particle radius might be adopted as the primary fitting parameter (rather than the customary $\unicode[STIX]{x1D701}$-potential) from an experimental measure of the dynamic mobility. This theory is general enough that it might be applied to aerosols and bubbly dispersions (at sufficiently high frequencies).

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barchini, R. & Saville, D. A. 1996 Electrokinetic properties of surfactant-stabilized oil droplets. Langmuir 12 (6), 14421445.CrossRefGoogle Scholar
Baygents, J. C. & Saville, D. A. 1991a Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87 (12), 18831898.CrossRefGoogle Scholar
Baygents, J. C. & Saville, D. A. 1991b Electrophoresis of small particles and fluid globules in weak electrolytes. J. Colloid Interface Sci. 146 (1), 937.CrossRefGoogle Scholar
Benrraou, M., Bales, B. L. & Zana, R. 2003 Effect of the nature of the counterion on the properties of anionic surfactants. 1. CMC, ionization degree at the CMC and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J. Phys. Chem. B 107 (48), 1343213440.CrossRefGoogle Scholar
Booth, F. 1951 The cataphoresis of spherical fluid droplets in electrolytes. J. Chem. Phys. 19 (11), 13311336.CrossRefGoogle Scholar
Borwankar, R. P. & Wasan, D. T. 1988 Equilibrium and dynamics of adsorption of surfactants at fluid–fluid interfaces. Chem. Engng Sci. 43 (6), 13231337.CrossRefGoogle Scholar
Bouchemal, K., Briancon, S., Perrier, E. & Fessi, H. 2004 Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Intl J. Pharm. 280 (1), 241251.CrossRefGoogle ScholarPubMed
Christiansen, C. 1903 Kapillarelektrische Bewegungen. Ann. Phys. 317 (13), 10721079.CrossRefGoogle Scholar
de Aguiar, H. B., de Beer, A. G. F., Strader, M. L. & Roke, S. 2010 The interfacial tension of nanoscopic oil droplets in water is Hardly affected by SDS surfactant. J. Am. Chem. Soc. 132 (7), 21222123.CrossRefGoogle ScholarPubMed
Denbigh, K. 1964 The Principles of Chemical Equilibrium. Cambridge University Press.Google Scholar
Djerdjev, A. M. & Beattie, J. K. 2008 Electroacoustic and ultrasonic attenuation measurements of droplet size and 𝜁-potential of alkane-in-water emulsions: effects of oil solubility and composition. Phys. Chem. Chem. Phys. 10, 48434852.CrossRefGoogle ScholarPubMed
Eriksson, J. C. & Ljunggren, S. 1989 A molecular theory of the surface tension of surfactant solutions. Colloids Surf. 38 (1), 179203.CrossRefGoogle Scholar
Gupta, A., Eral, H. B., Hatton, T. A. & Doyle, P. S. 2016 Nanoemulsions: formation, properties and applications. Soft Matt. 12 (11), 28262841.CrossRefGoogle ScholarPubMed
Hashemnejad, S. M., Badruddoza, A. Z. M., Zarket, B., Ricardo Castaneda, C. & Doyle, P. S. 2019 Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat. Commun. 10 (1), 14255–10.CrossRefGoogle ScholarPubMed
Hill, R. J., Saville, D. A. & Russel, W. B. 2003 Electrophoresis of spherical polymer-coated colloidal particles. J. Colloid Interface Sci. 258 (1), 5674.CrossRefGoogle Scholar
Hunter, R. J. 2001 Foundations of Colloid Science. Oxford University Press.Google Scholar
Hunter, R. J. & O’Brien, R. W. 1997 Electroacoustic characterization of colloids with unusual particle properties. Colloids Surf. A 126 (2), 123128.CrossRefGoogle Scholar
Jalsenjak, N. & Tezak, J. 2004 A new method for simultaneous estimation of micellization parameters from conductometric data. Chem. Eur. J. 10 (20), 50005007.CrossRefGoogle ScholarPubMed
Khair, A. S. & Squires, T. M. 2009 The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21 (4), 042001.CrossRefGoogle Scholar
Kralchevsky, P. A., Danov, K. D., Broze, G. & Mehreteab, A. 1999 Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of salts of various valency. Langmuir 15, 23512365.CrossRefGoogle Scholar
Levich, V. G. 1962 Physiochemical Hydrodynamics. Prentice-Hall.Google Scholar
Mangelsdorf, C. S. & White, L. R. 1992 Electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J. Chem. Soc. Faraday Trans. 88 (24), 35673581.CrossRefGoogle Scholar
Miller, C. A. 1988 Spontaneous emulsification produced by diffusion – a review. Colloids Surf. 29 (1), 89102.CrossRefGoogle Scholar
Mohammadi, A. 2016 Oscillatory response of charged droplets in hydrogels. J. Non-Newtonian Fluid Mech. 234, 215235.CrossRefGoogle Scholar
O’Brien, R. W. 1986 The high-frequency dielectric dispersion of a colloid. J. Colloid Interface Sci. 113 (1), 8193.CrossRefGoogle Scholar
O’Brien, R. W. 1988 Electro-acoustic effects in a dilute suspension of spherical particles. J. Fluid Mech. 190, 7186.CrossRefGoogle Scholar
O’Brien, R. W. 1990 The electroacoustic equations for a colloidal suspension. J. Fluid Mech. 212, 8193.CrossRefGoogle Scholar
O’Brien, R. W., Cannon, D. W. & Rowlands, W. N. 1995 Electroacoustic determination of particle size and zeta potential. J. Colloid Interface Sci. 173 (2), 406418.CrossRefGoogle Scholar
O’Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2 74, 16071626.CrossRefGoogle Scholar
Ohshima, H. 1995 Electrophoresis of soft particles. Adv. Colloid Interface Sci. 62, 189235.CrossRefGoogle Scholar
Ohshima, H. 1996 Dynamic electrophoretic mobility of a spherical colloidal particle. J. Colloid Interface Sci. 179 (2), 431438.CrossRefGoogle Scholar
Ohshima, H., Healy, T. W. & White, L. R. 1984 Electrokinetic phenomena in a dilute suspension of charged mercury drops. J. Chem. Soc. Faraday Trans. 2 80 (12), 16431667.CrossRefGoogle Scholar
Pozrikidis, C. 1998 A singularity method for unsteady linearized flow. Phys. Fluids 1 (9), 15081520.CrossRefGoogle Scholar
Prosser, A. J. & Franses, E. I. 2001 Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models. Colloids Surf. A 178 (1–3), 140.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A. & Showalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2013 Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394423.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2014 Electrophoresis of bubbles. J. Fluid Mech. 753, 4979.CrossRefGoogle Scholar
Schramm, L. L., Stasiuk, E. N. & Marangoni, D. G. 2003 Surfactants and their applications. Annu. Rep. Prog. Chem. C 99 (0), 348.CrossRefGoogle Scholar
Stigter, D. 1967 On density, hydration, shape, and charge of micelles of sodium dodecyl sulfate and dodecyl ammonium chloride. J. Colloid Interface Sci. 23 (3), 379388.CrossRefGoogle Scholar
Stigter, D. 1978 Kinetic charge of colloidal electrolytes from conductance and electrophoresis. Detergent micelles, poly (methacrylates), and DNA in univalent salt solutions. J. Phys. Chem. 83 (12), 16701675.CrossRefGoogle Scholar
Taylor, T. D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18 (3), 466476.CrossRefGoogle Scholar
Tokiwa, F. & Aigami, K. 1970 Light scattering and electrophoretic studies of mixed micelles of ionic and nonionic surfactants. Kolloidn. Z. 239 (2), 687691.CrossRefGoogle Scholar
Velarde, M. G. 1998 Drops, liquid layers and the Marangoni effect. Phil. Trans. R. Soc. Lond. A 356 (1739), 829844.CrossRefGoogle Scholar
Wuzhang, J., Song, Y., Sun, R., Pan, X. & Li, D. 2015 Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis 36 (19), 24892497.CrossRefGoogle ScholarPubMed
Yang, F., Wu, W., Chen, S. & Gan, W. 2017 The ionic strength dependent zeta potential at the surface of hexadecane droplets in water and the corresponding interfacial adsorption of surfactants. Soft Matt. 13 (3), 638646.CrossRefGoogle ScholarPubMed
Zukoski, C. F. & Saville, D. A. 1986 The interpretation of electrokinetic measurements using a dynamic model of the Stern layer: I. The dynamic model. J. Colloid Interface Sci. 114 (1), 3244.CrossRefGoogle Scholar