Article contents
Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles
Published online by Cambridge University Press: 11 November 2021
Abstract
We investigate the dynamic couplings between particles and fluid in turbulent Rayleigh–Bénard (RB) convection laden with isothermal inertial particles. Direct numerical simulations combined with the Lagrangian point-particle mode were carried out in the range of Rayleigh number $1\times 10^6 \le {Ra}\le 1 \times 10^8$ at Prandtl number ${Pr}=0.678$ for three Stokes numbers ${St_f}=1 \times 10^{-3}$, $8 \times 10^{-3}$ and $2.5 \times 10^{-2}$. It is found that the global heat transfer and the strength of turbulent momentum transfer are altered a small amount for the small Stokes number and large Stokes number as the coupling between the two phases is weak, whereas they are enhanced a large amount for the medium Stokes number due to strong coupling of the two phases. We then derived the exact relation of kinetic energy dissipation in the particle-laden RB convection to study the budget balance of induced and dissipated kinetic energy. The strength of the dynamic coupling can be clearly revealed from the percentage of particle-induced kinetic energy over the total induced kinetic energy. We further derived the power law relation of the averaged particles settling rate versus the Rayleigh number, i.e. $S_p/(d_p/H)^2{\sim} Ra^{1/2}$, which is in remarkable agreement with our simulation. We found that the settling and preferential concentration of particles are strongly correlated with the coupling mechanisms.
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
REFERENCES
- 15
- Cited by