Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:12:15.787Z Has data issue: false hasContentIssue false

Duelling dry zones around hygroscopic droplets

Published online by Cambridge University Press:  29 August 2018

Saurabh Nath
Affiliation:
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
Caitlin E. Bisbano
Affiliation:
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
Pengtao Yue
Affiliation:
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
Jonathan B. Boreyko*
Affiliation:
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
*
Email address for correspondence: [email protected]

Abstract

In the 1480s, da Vinci invented the first hygrometer using cellulose fibres to attract moisture from the atmosphere. Five hundred years later, Williams and Blanc showed that the depressed vapour pressure of a hygroscopic sessile droplet can inhibit condensation within an annular dry zone on the surface. What remains unresolved to this day is whether these regions of suppressed condensation around hygroscopic agents are due to inhibited nucleation versus inhibited growth of the condensate. We elucidate the competition between these two mechanisms by generating steady-state dry zones about frozen water droplets. The choice of ice as the hygroscopic material was motivated by its unique ability to remain undiluted as it attracts moisture from the air. Experiments, scaling models, and simulations where the ice droplet size, ambient humidity and surface temperature are systematically varied reveal that over the vast majority of the parameter space, the inhibited growth dry zone wins the duel over the nucleation dry zone.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizenberg, J., Black, A. J. & Whitesides, G. M. 1999 Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. J. Am. Chem. Soc. 121, 45004509.Google Scholar
Beysens, D. 1995 The formation of dew. Atmos. Res. 39, 215237.Google Scholar
Biswas, S., Chakrabarti, A., Chateauminois, A., Wandersman, E., Prevost, A. M. & Chaudhury, M. K. 2015 Soft lithography using nectar droplets. Langmuir 31, 1315513164.Google Scholar
Boreyko, J. B., Hansen, R. R., Murphy, K. R., Nath, S., Retterer, S. T. & Collier, C. P. 2016 Controlling condensation and frost growth with chemical micropatterns. Sci. Rep. 6, 19131.Google Scholar
Cha, H., Wu, A., Kim, M. K., Saigusa, K., Liu, A. & Miljkovic, N. 2017 Nanoscale-agglomerate-mediated heterogeneous nucleation. Nano Lett. 17, 75447551.Google Scholar
Chan, C. W., Ling-Chin, J. & Roskilly, A. P. 2013 A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation. Appl. Therm. Engng 50, 12571273.Google Scholar
Chen, X., Goodnight, D., Gao, Z., Cavusoglu, A. H., Sabharwal, N., DeLay, M., Driks, A. & Sahin, O. 2015 Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6, 7346.Google Scholar
Dawson, C., Vincent, J. F. V. & Rocca, A. M. 1997 How pine cones open. Nature 390 (6661), 668.Google Scholar
Guadarrama-Cetina, J., Mongruel, A., Gonzalez-Vinas, W. & Beysens, D. 2015 Frost formation with salt. Europhys. Lett. 110, 56002.Google Scholar
Guadarrama-Cetina, J., Narhe, R. D., Beysens, D. A. & Gonzalez-Vinas, W. 2014 Droplet pattern and condensation gradient around a humidity sink. Phys. Rev. E 89, 012402.Google Scholar
Jung, S., Tiwari, M. K. & Poulikakos, D. 2012 Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. USA 109, 1607316078.Google Scholar
Lopez, G. P., Biebuyck, H. A., Frisbie, C. D. & Whitesides, G. M. 1993 Imaging of features on surfaces by condensation figures. Science 260, 647649.Google Scholar
Medici, M. G., Mongruel, A., Royon, L. & Beysens, D. 2014 Edge effects on water droplet condensation. Phys. Rev. E 90, 062403.Google Scholar
Murphy, D. M. & Koop, T. 2005 Review of the vapour pressures of ice and supercooled water for atsmopheric applications. Q. J. R. Meteorol. Soc. 131, 15391565.Google Scholar
Narayanan, S., Li, X., Yang, S., Kim, H., Umans, A., McKay, I. S. & Wang, E. N. 2015 Thermal battery for portable climate control. Appl. Energ. 149, 104116.Google Scholar
Nath, S. & Boreyko, J. B. 2016 On localized vapor pressure gradients governing condensation and frost phenomena. Langmuir 32, 83508365.Google Scholar
Nishinaga, T. 2014 Handbook of Crystal Growth: Fundamentals. Elsevier.Google Scholar
Quere, D. 2005 Non-sticking drops. Rep. Prog. Phys. 68, 24952532.Google Scholar
Reyssat, E. & Mahadevan, L. 2009 Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6 (39), 951957.Google Scholar
Sun, X., Damle, V. G., Uppal, A., Linder, R., Chandrashekar, S., Mohan, A. R. & Rykaczewski, K. 2015 Inhibition of condensation frosting by arrays of hygroscopic antifreeze drops. Langmuir 31, 1374313752.Google Scholar
Sun, X. & Rykaczewski, K. 2016 Suppression of frost nucleation achieved using the nanoengineered integral humidity sink effect. ACS Nano 11, 906917.Google Scholar
Williams, R. & Blanc, J. 1981 Inhibition of water condensation by a soluble salt nucleus. J. Chem. Phys. 74 (8), 46754677.Google Scholar

Nath et al. supplementary movie 1

Evaporating Raindrops in the Dry Zone: Micrometric rain droplets falling inside the dry zone around a a frozen droplet of volume V = 100 μL, at a substrate temperature Tw = −30 °C, air temperature T∞ = 23.8 °C and humidity of H = 65%. The falling droplets irrespective of their location inside the dry zone evaporate. This shows that the dry zone around the frozen droplet is indeed a flux dry zone.

Download Nath et al. supplementary movie 1(Video)
Video 23.1 MB

Nath et al. supplementary movie 2

The Breathing of the Dry Zone: Video shows how the condensation grows in toward the frozen droplet and then evaporates out to δF, when the experiment starts from δ(t = 0) →∞ (Cases III and IV of figure S1). Here the final steady state δF corresponds to a frozen droplet of volume V = 10 μL, at a substrate temperature Tw = −12.5 °C, air temperature T∞ = 14.9 °C and humidity of H = 21%. Scale bar denotes 100 μm.

Download Nath et al. supplementary movie 2(Video)
Video 17.7 MB