Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T06:13:20.881Z Has data issue: false hasContentIssue false

Droplet impact onto an elastic plate: a new mechanism for splashing

Published online by Cambridge University Press:  02 February 2018

Michael Pegg*
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England
Richard Purvis
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England
Alexander Korobkin
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England
*
Email address for correspondence: [email protected]

Abstract

During a droplet impact onto a substrate, splashing is known to be caused by the presence of surrounding gas or by surface roughness. Impact occurring in a vacuum onto a smooth rigid wall results in droplet spreading, rather than development of a corona or prompt splash. Here we present an analytical and numerical study of a third potential splashing mechanism, namely elastic deformation of the substrate. An axisymmetric Wagner-style model of droplet impact is formulated and solved using the method of normal modes, together with asymptotic analysis and numerical methods. We highlight the effect that a flexible substrate brings to the contact line velocity and jet behaviour, demonstrating that oscillation of the substrate can cause blow-up of the splash jet which is absent for a rigid substrate and indicate the onset of splashing.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizadeh, A., Bahadur, V., Shang, W., Zhu, Y., Buckley, D., Dhinojwala, A. & Sohal, M. 2013 Influence of substrate elasticity on droplet impact dynamics. Langmuir 29 (14), 45204524.Google Scholar
Blocken, B. & Carmeliet, J. 2004 A reivew of wind-driven rain research in building science. J. Wind Engng Ind. Aerodyn. 92 (13), 10791130.Google Scholar
Ellis, A. S., Smith, F. T. & White, A. H. 2011 Droplet impact on to a rough surface. Q. J. Mech. Appl. Maths 64 (2), 107139.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Table of Integrals, Series and Products, 7th edn. Academic Press.Google Scholar
Howison, S. D., Ockendon, J. R., Oliver, J. M., Purvis, R. & Smith, F. T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 123.Google Scholar
Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.Google Scholar
Howland, C. J., Antkowiak, A., Castrejón-Pita, J. R., Howison, S. D., Oliver, J. M., Style, R. W. & Castrejón-Pita, A. A. 2016 It’s harder to splash on soft solids. Phys. Rev. Lett. 117, 184502.Google Scholar
von Karman, Th. 1929 The impact on seaplane floats during landing. Nat. Advisory Comittee Aeronaut. 321, 309313.Google Scholar
Khabakhpasheva, T. I. & Korobkin, A. A. 2013 Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models. J. Fluids Struct. 36, 3249.Google Scholar
Khabakhpasheva, T. I. & Korobkin, A. A. 2016 Liquid drop impact on a vibrating substrate. In Proceedings of 3rd International Conference on Violent Flows, Osaka, Japan.Google Scholar
Korobkin, A. A. 1982 Formulation of penetration problem as a variational inequality. Dinamika Sploshnoi Sredy 58, 7379.Google Scholar
Korobkin, A. A. 1996 Water Impact Problems in Ship Hydrodynamics, chap. 7, pp. 323371. Computational Mechanics Publications.Google Scholar
Korobkin, A. A. 1997 Liquid-Solid Impact. Siberian Branch of the Russian Academy.Google Scholar
Korobkin, A. A. 1998 Wave impact on the centre of an Euler beam. J. Appl. Mech. Tech. Phys. 39 (5), 770781.Google Scholar
Korobkin, A. A. & Scolan, Y. M. 2003 Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid. J. Fluids Struct. 17 (2), 275286.Google Scholar
Korobkin, A. A. & Khabakhpasheva, T. I. 2006 Regular wave impact onto an elastic plate. J. Engng Maths 55, 127159.Google Scholar
Korobkin, A. A. & Scolan, Y. M. 2006 Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J. Fluid Mech. 549, 343373.Google Scholar
Leissa, A. W.1969 Vibration of plates. Tech. Rep., Scientific and Technical Information Division, National Aeronautics and Space Administration.Google Scholar
Maitra, T., Antonini, C., Tiwari, M. K., Mularczyk, A., Imeri, Z., Schoch, P. & Poulikakos, D. 2014a Supercooled water drops impacting superhydrophobic textures. Langmuir 30 (36), 1085510861.Google Scholar
Maitra, T., Tiwari, M. K., Antonini, C., Schoch, P., Jung, S., Eberle, P. & Poulikakos, D. 2014b On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14 (1), 172182.Google Scholar
Mangili, S., Antonini, C., Marengo, M. & Amirfazli, A. 2012 Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matt. 8 (39), 1004510054.CrossRefGoogle Scholar
Martin, G. D., Hoath, S. D. & Hutchings, I. M. 2008 Inkjet printing: the physics of manipulating liquid jets and drops. J. Phys.: Conf. Ser. 105, 012001.Google Scholar
Moore, M. R., Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2012 Three-dimensional oblique water-entry problems at small deadrise angles. J. Fluid Mech. 711, 259280.Google Scholar
Moore, M. R., Ockendon, J. R. & Oliver, J. M. 2013 Air-cushioning in impact problems. IMA J. Appl. Maths 78 (4), 818838.CrossRefGoogle Scholar
Moore, M. R. & Oliver, J. M. 2014 On air cushioning in axisymmetric impacts. IMA J. Appl. Maths 79 (4), 661.Google Scholar
Nguyen, T. V., Takahashi, H. & Shimoyama, I. 2017 MEMS-based pressure sensor with a superoleophobic membrane for measuring droplet vibration. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 11521155. IEEE.Google Scholar
Oliver, J. M.2002 Water entry and related problems. PhD thesis, St Anne’s College, University of Oxford.Google Scholar
Pepper, R. E., Courbin, L. & Stone, H. A. 2008 Splashing on elastic membranes: the importance of early-time dynamics. Phys. Fluids 20 (8), 082103.CrossRefGoogle Scholar
Philippi, J., Lagree, P. Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short time self-similarity. J. Fluid Mech. 795, 96138.Google Scholar
Reinhard, M., Korobkin, A. A. & Cooker, M. J. 2013 Water entry of a flat elastic plate at high horizontal speed. J. Fluid Mech. 724, 123153.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.Google Scholar
Scolan, Y. M. 2004 Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid. J. Sound Vib. 227 (1–2), 163203.Google Scholar
Scolan, Y. M. & Korobkin, A. A. 2001 Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J. Fluid Mech. 440, 293326.Google Scholar
Semenov, Y. A., Wu, G. X. & Korobkin, A. A. 2015 Impact of liquids with different densities. J. Fluid Mech. 766, 527.Google Scholar
Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. North-Holland.Google Scholar
Tkacheva, L. A. 2008 Impact of a box with an elastic bottom on a thin liquid layer. J. Appl. Math. Mech. 72 (4), 427436.CrossRefGoogle Scholar
Vasileiou, T., Schutzius, T. M. & Poulikakos, D. 2017 Imparting icephobicity with substrate flexibility. Langmuir 33 (27), 67086718.Google Scholar
Wagner, H. 1932 Über Stoss- und Gleitvergänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12 (4), 193215.Google Scholar
Weisensee, P. B., Tian, J., Miljkovik, N. & King, W. P. 2016 Water droplet impact on elastic superhydrophobic surfaces. Sci. Rep. 6, 30328.Google Scholar
Wu, G. X. 2007 Two-dimensional liquid column and liquid droplet impact on a solid wedge. Q. J. Mech. Appl. Maths 60, 496511.Google Scholar
Xu, G. D., Wu, G. X. & Duan, W. Y. 2011 Axisymmetric liquid block impact on a solid surface. Appl. Ocean Res. 33 (4), 366374.CrossRefGoogle Scholar
Xu, L. 2007 Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75 (5).Google Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94 (18), 184505.Google Scholar