Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T06:37:42.618Z Has data issue: false hasContentIssue false

Drop impact on super-wettability-contrast annular patterns

Published online by Cambridge University Press:  30 July 2013

Seungho Kim
Affiliation:
School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
Myoung-Woon Moon
Affiliation:
Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 136-791, Korea
Ho-Young Kim*
Affiliation:
School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
*
Email address for correspondence: [email protected]

Abstract

Extreme wetting properties of solids, either superhydrophobic or superhydrophilic, provide versatile methods to achieve unusual liquid deposit morphologies, such as liquid pearls or polygonal films. Here we report the dynamics of liquid drops that impact on solid surfaces where the extreme wetting properties are coupled in such a way that a superhydrophilic annulus is patterned on a superhydrophobic background. The drop that initially spreads on the inner superhydrophobic region is arrested by the hydrophilic annulus. The liquid deposit gets destabilized because of the strong water repellence of the inner region, exhibiting the burst and disengagement of the liquid film. This process leads to the formation of a liquid ring defined by the annulus pattern, which has practical implications in rapid printing of functional liquids. We visualize such drop dynamics with a high-speed camera and characterize their salient features by combining experimental measurements and theoretical considerations.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.Google Scholar
Bico, J., Tordeux, C. & Quéré, D. 2001 Rough wetting. Europhys. Lett. 55, 214220.Google Scholar
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.Google Scholar
Boreyko, J. B. & Chen, C.-H. 2009 Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501.Google Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4, 149154.Google Scholar
Courbin, L., Denieul, E., Dressaire, E., Roper, M., Ajdari, A. & Stone, H. A. 2007 Imbibition by polygonal spreading on microdecorated surfaces. Nat. Mater. 6, 661664.Google Scholar
Cubaud, T. & Fermigier, M. 2001 Faceted drops on heterogeneous surfaces. Europhys. Lett. 55, 239245.Google Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Davis, S. H. 1980 Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J. Fluid Mech. 98, 225242.Google Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.CrossRefGoogle Scholar
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.Google Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.Google Scholar
Habenicht, A., Olapinski, M., Burmeister, F., Leiderer, P. & Boneberg, J. 2005 Jumping nanodroplets. Science 309, 20432045.Google Scholar
Ishino, C., Reyssat, M., Reyssat, E., Okumura, K. & Quéré, D. 2007 Wicking within forests of micropillars. Europhys. Lett. 79, 56005.Google Scholar
Jokinen, V., Sainiemi, L. & Franssila, S. 2008 Complex droplets on chemically modified silicon nanograss. Adv. Mater. 20, 34533456.Google Scholar
Kataoka, D. E. & Troian, S. M. 1999 Patterning liquid flow on the microscopic scale. Nature 402, 794797.Google Scholar
Kim, P., Duprat, C., Tsai, S. S. H. & Stone, H. A. 2011c Spreading and jetting of electrically driven dielectric films. Phys. Rev. Lett. 107, 034502.Google Scholar
Kim, H.-Y., Feng, Z. C. & Chun, J.-H. 2000 Instability of a liquid jet emerging from a droplet upon collision with a solid surface. Phys. Fluids 12, 531541.Google Scholar
Kim, S. J., Moon, M.-W., Lee, K.-R., Lee, D.-Y., Chang, Y. S. & Kim, H.-Y. 2011a Liquid spreading on superhydrophilic micropillar arrays. J. Fluid Mech. 680, 477487.Google Scholar
Kim, J., Moon, M.-W., Lee, K.-R., Mahadevan, L. & Kim, H.-Y. 2011b Hydrodynamics of writing with ink. Phys. Rev. Lett. 107, 264501.Google Scholar
Lee, M., Chang, Y. S. & Kim, H.-Y. 2010 Drop impact on microwetting patterned surfaces. Phys. Fluids 22, 072101.Google Scholar
Mao, T., Kuhn, D. C. S. & Tran, H. 1997 Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43, 21692179.Google Scholar
Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. 1996 Super-water-repellent fractal surfaces. Langmuir 12, 21252127.Google Scholar
Quéré, D. 2008 Wetting and roughness. Annu. Rev. Mater. Res. 38, 7199.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.CrossRefGoogle Scholar
Reyssat, M., Pardo, F. & Quéré, D. 2009 Drops onto gradients of texture. Europhys. Lett. 87, 36003.Google Scholar
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50, 769775.Google Scholar
Rioboo, R., Voué, M., Vaillant, A. & De Coninck, J. 2008 Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24, 1407414077.Google Scholar
Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J. & Boland, T. 2004 Inkjet printing for high throughput cell patterning. Biomaterials 25, 37073715.CrossRefGoogle ScholarPubMed
Russo, A., Ahn, B. Y., Adams, J. J., Duoss, E. B., Bernhard, J. T. & Lewis, J. A. 2011 Pen-on-paper flexible electronics. Adv. Mater. 23, 34263430.Google Scholar
Sbragaglia, M., Peters, A. M., Pirat, C., Borkent, B. M., Lammertink, R. G. H., Wessling, M. & Lohse, D. 2007 Spontaneous breakdown of superhydrophobicity. Phys. Rev. Lett. 99, 156001.Google Scholar
Schiaffino, S. & Sonin, A. A. 1997 Formation and stability of liquid and molten beads on a solid surface. J. Fluid Mech. 343, 95110.Google Scholar
Sharma, A. & Ruckenstein, E. 1989 Dewetting of solids by the formation of holes in macroscopic liquid films. J. Colloid Interface Sci. 133, 358368.Google Scholar
Shin, B., Lee, K.-R., Moon, M.-W. & Kim, H.-Y. 2012 Extreme water repellency of nanostructured low-surface-energy non-woven fabrics. Soft Matt. 8, 18171823.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. Part 3. Disintegration of fluid sheets. Proc. R. Soc. London. Ser. A 253, 313321.Google Scholar
Tsai, P., Pacheco, S., Pirat, C., Lefferts, L. & Lohse, D. 2009 Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25, 1229312298.Google Scholar
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.Google Scholar
Worthington, A. M. 1877 On the forms assumed by drops of liquid falling on a horizontal plate. Proc. R. Soc. London 25, 261272.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Zhang, Y., Zhu, Y., Yao, B. & Fang, Q. 2011 Nanolitre droplet array for real time reverse transcription polymerase chain reaction. Lab on a Chip 11, 15451549.Google Scholar
Zhao, B., Moore, J. S. & Beebe, D. J. 2001 Surface-directed liquid flow inside microchannels. Science 291, 10231026.Google Scholar