Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T02:39:09.342Z Has data issue: false hasContentIssue false

Drop impact on a sticky porous surface with gas discharge: transformation of drops into bubbles

Published online by Cambridge University Press:  05 December 2022

Lukas Weimar
Affiliation:
Fachbereich Maschinenbau, Fachgebiet Nano- und Mikrofluidik, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Luyang Hu
Affiliation:
Fachbereich Maschinenbau, Fachgebiet Nano- und Mikrofluidik, Technische Universität Darmstadt, 64287 Darmstadt, Germany School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, PR China
Tobias Baier*
Affiliation:
Fachbereich Maschinenbau, Fachgebiet Nano- und Mikrofluidik, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Steffen Hardt
Affiliation:
Fachbereich Maschinenbau, Fachgebiet Nano- und Mikrofluidik, Technische Universität Darmstadt, 64287 Darmstadt, Germany
*
Email address for correspondence: [email protected]

Abstract

The impact of drops on a porous surface with high contact-angle hysteresis and gas discharge is studied. Four different impact modes, ranging from complete repulsion to fast immobilization of a drop on the surface, are identified and mapped in a space spanned by the pressure difference of the gas across the porous surface and the impact Weber number of the drop. The most remarkable aspect of the dynamics is the transformation of a drop into a bubble, which occurs when a drop just overcomes the repulsion by the gas flow and wets the surface. The transition to the regime in which a drop is transformed to a bubble is well described by a simple scaling relationship based on a balance between inertia and the repulsive force due to the gas flow.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agapov, R.L., Boreyko, J.B., Briggs, D.P., Srijanto, B.R., Retterer, S.T., Collier, C.P. & Lavrik, N.V. 2014 Asymmetric wettability of nanostructures directs Leidenfrost droplets. ACS Nano 8 (1), 860867.CrossRefGoogle ScholarPubMed
Amestoy, P.R., Buttari, A., Duff, I.S., Guermouche, A., L'Excellent, J.-Y. & Uçar, B. 2011 MUMPS. In Encyclopedia of Parallel Computing (ed. D. Padua), chap. MUMPS, pp. 1232–1238. Springer.Google Scholar
Antonini, C., Jung, S., Wetzel, A., Heer, E., Schoch, P., Moqaddam, A.M., Chikatamarla, S.S., Karlin, I., Marengo, M. & Poulikakos, D. 2016 Contactless prompt tumbling rebound of drops from a sublimating slope. Phys. Rev. Fluids 1, 013903.CrossRefGoogle Scholar
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329338.CrossRefGoogle Scholar
Bertola, V. 2009 An experimental study of bouncing Leidenfrost drops: comparison between Newtonian and viscoelastic liquids. Intl J. Heat Mass Transfer 52 (7-8), 17861793.CrossRefGoogle Scholar
Biance, A.L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.CrossRefGoogle Scholar
Bird, J.C., Dhiman, R., Kwon, H. -M. & Varanasi, K.K. 2013 Reducing the contact time of a bouncing drop. Nature 503 (7476), 385388.CrossRefGoogle ScholarPubMed
Bormashenko, E. 2015 Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 222, 92103.CrossRefGoogle ScholarPubMed
Bouwhuis, W., Winkels, K.G., Peters, I.R., Brunet, P., Van Der Meer, D. & Snoeijer, J.H. 2013 Oscillating and star-shaped drops levitated by an airflow. Phys. Rev. E 88 (2), 023017.CrossRefGoogle ScholarPubMed
Breitenbach, J., Roisman, I.V. & Tropea, C. 2017 Heat transfer in the film boiling regime: single drop impact and spray cooling. Intl J. Heat Mass Transfer 110, 3442.CrossRefGoogle Scholar
Brunet, P. & Snoeijer, J.H. 2011 Star-drops formed by periodic excitation and on an air cushion – a short review. Eur. Phys. J. Spec. Top. 192 (1), 207226.CrossRefGoogle Scholar
Butcher, J.C. 2016 Numerical Methods for Ordinary Differential Equations, 3rd edn. John Wiley & Sons.CrossRefGoogle Scholar
Castanet, G., Caballina, O. & Lemoine, F. 2015 Drop spreading at the impact in the Leidenfrost boiling. Phys. Fluids 27 (6), 063302.CrossRefGoogle Scholar
Chandra, S. & Avedisian, C.T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432 (1884), 1341.Google Scholar
Chen, S. & Bertola, V. 2016 Jumps, somersaults, and symmetry breaking in Leidenfrost drops. Phys. Rev. E 94 (2), 021102.CrossRefGoogle ScholarPubMed
Cheng, X., Sun, T.-P. & Gordillo, L. 2022 Drop impact dynamics: impact force and stress distributions. Annu. Rev. Fluid Mech. 54, 5781.CrossRefGoogle Scholar
Chrysinas, P., Pashos, G., Vourdas, N., Kokkoris, G., Stathopoulos, V.N. & Boudouvis, A.G. 2018 Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates. Soft Matt. 14 (29), 60906101.CrossRefGoogle ScholarPubMed
Chubynsky, M.V., Belousov, K.I., Lockerby, D.A. & Sprittles, J.E. 2020 Bouncing off the walls: the influence of gas-kinetic and van der Waals effects in drop impact. Phys. Rev. Lett. 124 (8), 084501.CrossRefGoogle Scholar
Clavijo, C.E., Crockett, J. & Maynes, D. 2017 Hydrodynamics of droplet impingement on hot surfaces of varying wettability. Intl J. Heat Mass Transfer 108, 17141726.CrossRefGoogle Scholar
De Ruiter, J., Lagraauw, R., Van Den Ende, D. & Mugele, F. 2015 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11 (1), 4853.CrossRefGoogle Scholar
Driscoll, M.M. & Nagel, S.R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107 (15), 154502.CrossRefGoogle ScholarPubMed
Duchemin, L., Lister, J.R. & Lange, U. 2005 Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.CrossRefGoogle Scholar
Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F. & Jiang, L. 2008 Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24 (8), 41144119.CrossRefGoogle ScholarPubMed
Goldshtik, M.A., Khanin, V.M. & Ligai, V.G. 1986 A liquid drop on an air cushion as an analogue of Leidenfrost boiling. J. Fluid Mech. 166, 120.CrossRefGoogle Scholar
Hervieu, E., Coutris, N. & Boichon, C. 2001 Oscillations of a drop in aerodynamic levitation. Nucl. Engng Des. 204 (1–3), 167175.CrossRefGoogle Scholar
Hicks, P.D. & Purvis, R. 2013 Liquid–solid impacts with compressible gas cushioning. J. Fluid Mech. 735, 120149.CrossRefGoogle Scholar
Holzapfel, G.A. 2000 Nonlinear Solid Mechanics. John Wiley & Sons.Google Scholar
Josserand, C. & Thoroddsen, S.T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Karl, A. & Frohn, A. 2000 Experimental investigation of interaction processes between droplets and hot walls. Phys. Fluids 12 (4), 785796.CrossRefGoogle Scholar
Khavari, M., Sun, C., Lohse, D. & Tran, T. 2015 Fingering patterns during droplet impact on heated surfaces. Soft Matt. 11 (17), 32983303.CrossRefGoogle ScholarPubMed
Kolinski, J.M., Kaviani, R., Hade, D. & Rubinstein, S.M. 2019 Surfing the capillary wave: wetting dynamics beneath an impacting drop. Phys. Rev. Fluids 4 (12), 123605.CrossRefGoogle Scholar
Kolinski, J.M., Mahadevan, L. & Rubinstein, S.M. 2014 Drops can bounce from perfectly hydrophilic surfaces. Europhys. Lett. 108 (2), 24001.CrossRefGoogle Scholar
Kolinski, J.M., Rubinstein, S.M., Mandre, S., Brenner, M.P., Weitz, D.A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108 (7), 074503.CrossRefGoogle ScholarPubMed
Lee, D.J. & Song, Y.S. 2016 Anomalous water drop bouncing on a nanotextured surface by the Leidenfrost levitation. Appl. Phys. Lett. 108 (20), 201604.CrossRefGoogle Scholar
Lee, S.H., Harth, K., Rump, M., Kim, M., Lohse, D., Fezzaa, K. & Je, J.H. 2020 Drop impact on hot plates: contact times, lift-off and the lamella rupture. Soft Matt. 16 (34), 79357949.CrossRefGoogle ScholarPubMed
Liang, G. & Mudawar, I. 2017 Review of drop impact on heated walls. Intl J. Heat Mass Transfer 106, 103126.CrossRefGoogle Scholar
Liang, G., Shen, S., Guo, Y. & Zhang, J. 2016 Boiling from liquid drops impact on a heated wall. Intl J. Heat Mass Transfer 100, 4857.CrossRefGoogle Scholar
Lister, J.R., Thompson, A.B., Perriot, A. & Duchemin, L. 2008 Shape and stability of axisymmetric levitated viscous drops. J. Fluid Mech. 617, 167185.CrossRefGoogle Scholar
Liu, L., Cai, G. & Tsai, P.A. 2020 Drop impact on heated nanostructures. Langmuir 36 (34), 1005110060.CrossRefGoogle ScholarPubMed
Mandre, S. & Brenner, M.P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.CrossRefGoogle Scholar
Mandre, S., Mani, M. & Brenner, M.P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.CrossRefGoogle ScholarPubMed
Mani, M., Mandre, S. & Brenner, M.P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
Papoular, M. & Parayre, C. 1997 Gas-film levitated liquids: shape fluctuations of viscous drops. Phys. Rev. Lett. 78 (11), 21202123.CrossRefGoogle Scholar
Park, J. & Kim, D.E. 2019 Droplet dynamics on superheated surfaces with circular micropillars. Intl J. Heat Mass Transfer 142, 118459.CrossRefGoogle Scholar
Park, J. & Kim, D.E. 2020 Dynamic Leidenfrost temperature of saturated water drops on textured surfaces. Intl J. Heat Mass Transfer 150, 119298.CrossRefGoogle Scholar
Park, S.C., Kim, M.H., Yu, D.I. & Ahn, H.S. 2021 Geometrical parametric study of drop impingement onto heated surface with micro-pillar arrays. Intl J. Heat Mass Transfer 168, 120891.CrossRefGoogle Scholar
Patterson, C.J., Shiri, S. & Bird, J.C. 2017 Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop. J. Phys.: Condens. Matter 29 (6), 064007.Google ScholarPubMed
Perez, M., Brechet, Y., Salvo, L., Papoular, M. & Suery, M. 1999 Oscillation of liquid drops under gravity: influence of shape on the resonance frequency. Europhys. Lett. 47 (2), 189195.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196–199), 7197.Google Scholar
Riboux, G. & Gordillo, J.M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J.M. 2016 Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime. J. Fluid Mech. 803, 516527.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417 (6891), 811.CrossRefGoogle ScholarPubMed
Roisman, I.V., Breitenbach, J. & Tropea, C. 2018 Thermal atomisation of a liquid drop after impact onto a hot substrate. J. Fluid Mech. 842, 87101.CrossRefGoogle Scholar
de Ruiter, J., Oh, J.M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108 (7), 074505.CrossRefGoogle ScholarPubMed
Sahoo, V., Lo, C.W. & Lu, M.C. 2020 Leidenfrost suppression and contact time reduction of a drop impacting on silicon nanowire array-coated surfaces. Intl J. Heat Mass Transfer 148, 118980.CrossRefGoogle Scholar
Snoeijer, J.H., Brunet, P. & Eggers, J. 2009 Maximum size of drops levitated by an air cushion. Phys. Rev. E 79 (3), 036307.CrossRefGoogle ScholarPubMed
Tate, T. 1864 On the magnitude of a drop of liquid formed under different circumstances. Philos. Mag. 27 (181), 176180.CrossRefGoogle Scholar
Tran, T., Staat, H.J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.CrossRefGoogle ScholarPubMed
Tran, T., Staat, H.J., Susarrey-Arce, A., Foertsch, T.C., Van Houselt, A., Gardeniers, H.J., Prosperetti, A., Lohse, D. & Sun, C. 2013 Droplet impact on superheated micro-structured surfaces. Soft Matt. 9 (12), 32723282.CrossRefGoogle Scholar
Tsai, P.-H. & Wang, A.-B. 2019 Classification and prediction of dripping drop size for a wide range of nozzles by wetting diameter. Langmuir 35 (13), 47634775.CrossRefGoogle ScholarPubMed
Vourdas, N., Pashos, G., Kokkoris, G., Boudouvis, A.G. & Stathopoulos, V.N. 2016 Droplet mobility manipulation on porous media using backpressure. Langmuir 32 (21), 52505258.CrossRefGoogle ScholarPubMed
Vourdas, N., Ranos, C. & Stathopoulos, V.N. 2015 Reversible and dynamic transitions between sticky and slippery states on porous surfaces with ultra-low backpressure. RSC Adv. 5 (42), 3366633673.CrossRefGoogle Scholar
Vourdas, N., Tserepi, A. & Stathopoulos, V.N. 2013 Reversible pressure-induced switching of droplet mobility after impingement on porous surface media. Appl. Phys. Lett. 103 (11), 111602.CrossRefGoogle Scholar
Wachters, L.H., Smulders, L., Vermeulen, J.R. & Kleiweg, H.C. 1966 The heat transfer from a hot wall to impinging mist droplets in the spheroidal state. Chem. Engng Sci. 21 (12), 12311238.CrossRefGoogle Scholar
Wang, T. & Wang, Z. 2022 Liquid-repellent surfaces. Langmuir 38 (30), 90739084.CrossRefGoogle ScholarPubMed
Weickgenannt, C.M., Zhang, Y., Sinha-Ray, S., Roisman, I.V., Gambaryan-Roisman, T., Tropea, C. & Yarin, A.L. 2011 Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Phys. Rev. E 84 (3), 036310.CrossRefGoogle ScholarPubMed
Xu, L., Zhang, W.W. & Nagel, S.R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94 (18), 184505.CrossRefGoogle ScholarPubMed
Yarin, A.L., Roisman, I.V. & Tropea, C. 2017 Collision Phenomena in Liquids and Solids. Cambridge University Press.CrossRefGoogle Scholar
Zhang, W., Yu, T., Fan, J., Sun, W. & Cao, Z. 2016 Droplet impact behavior on heated micro-patterned surfaces. J. Appl. Phys. 119 (11), 114901.CrossRefGoogle Scholar

Weimar et al. Supplementary Movie 1

Video showing IM0 for a water drop. Drop impact velocity 0.18~m~s$^{-1}$, gas velocity 2.94~m~s$^{-1}$, drop radius 1.42~mm.

Download Weimar et al. Supplementary Movie 1(Video)
Video 309.3 KB

Weimar et al. Supplementary Movie 2

Video showing IM1 for a water drop. Drop impact velocity 0.49~m~s$^{-1}$, gas velocity 2.92~m~s$^{-1}$, drop radius 1.37~mm.

Download Weimar et al. Supplementary Movie 2(Video)
Video 344 KB

Weimar et al. Supplementary Movie 3

Video showing IM2 for a water drop. Drop impact velocity 0.90~m~s$^{-1}$, gas velocity 2.95~m~s$^{-1}$, drop radius 1.41~mm.

Download Weimar et al. Supplementary Movie 3(Video)
Video 287.2 KB

Weimar et al. Supplementary Movie 4

Video showing IM3 for a water drop. Drop impact velocity 1.10~m~s$^{-1}$, gas velocity 2.96~m~s$^{-1}$, drop radius 1.42~mm.

Download Weimar et al. Supplementary Movie 4(Video)
Video 226.3 KB

Weimar et al. Supplementary Movie 5

Video showing the bubble formation from a water drop. Drop impact velocity 0.67~m~s$^{-1}$, gas velocity 1.64~m~s$^{-1}$, drop radius 1.41~mm.

Download Weimar et al. Supplementary Movie 5(Video)
Video 2 MB

Weimar et al. Supplementary Movie 6

Video showing the bubble formation from a water + Triton X-100 drop, with 0.01 mass \% of surfactant added. Drop impact velocity 1.00~m~s$^{-1}$, gas velocity 1.86~m~s$^{-1}$, drop radius 0.99~mm.

Download Weimar et al. Supplementary Movie 6(Video)
Video 3.9 MB

Weimar et al. Supplementary Movie 7

Video corresponding to the drop impact simulations shown in figure 7.

Download Weimar et al. Supplementary Movie 7(Video)
Video 590.6 KB