Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T02:37:14.646Z Has data issue: false hasContentIssue false

Drag and lift forces on particles in a rotating flow

Published online by Cambridge University Press:  17 December 2009

J. J. BLUEMINK
Affiliation:
Faculty of Science and Technology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
D. LOHSE*
Affiliation:
Faculty of Science and Technology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
A. PROSPERETTI
Affiliation:
Faculty of Science and Technology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Department of Mechanical Engineering, The John Hopkins University, Baltimore, MD 21218, USA
L. VAN WIJNGAARDEN
Affiliation:
Faculty of Science and Technology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is visualized and appears to deflect strongly when the sphere is close to the cylinder axis. The spin rate of the sphere is recorded. In fluids with low viscosity, spin rates more than twice as large as the angular velocity of the cylinder can be observed. By comparing numerical results for a fixed but freely spinning sphere with a fixed non-spinning sphere for Re ≤ 200, the effect of the sphere spin on the lift coefficient is determined. The experimentally and numerically determined lift and drag coefficients and particle spin rates all show excellent agreement for Re ≤ 200. The combination of the experimental and numerical results allows for a parameterization of the lift and drag coefficients of a freely rotating sphere as function of the Reynolds number, the particle spin and the location of the particle with respect to the cylinder axis. Although the effect of the flow rotation on the particle spin is different in shear flow and solid-body rotating flow, the effect of spin on lift is found to be comparable for both types of flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagchi, P. & Balachandar, S. 2002 a Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14, 27192737.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2002 b Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473, 379388.CrossRefGoogle Scholar
Bluemink, J. J., Lohse, D., Prosperetti, A. & van Wijngaarden, L. 2008 A sphere in a uniformly rotating or shearing flow. J. Fluid Mech. 600, 201233.CrossRefGoogle Scholar
Bluemink, J. J., Van Nierop, E. A., Luther, S., Deen, N., Magnaudet, J., Prosperetti, A. & Lohse, D. 2005 Asymmetry-induced particle drift in a rotating flow. Phys. Fluids 17, 072106.CrossRefGoogle Scholar
Candelier, F., Angilella, J. R. & Souhar, M. 2004 On the effect of the Boussinesq–Basset force on the radial migration of a stokes particle in a vortex. Phys. Fluids 16, 17651776.CrossRefGoogle Scholar
Candelier, F., Angilella, J. R. & Souhar, M. 2005 On the effect of inertia and history forces on the slow motion of a spherical solid or gaseous inclusion in a solid-body rotation flow. J. Fluid Mech. 545, 113139.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.Google Scholar
Dandy, D. S. & Dwyer, H. A. 1990 A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer. J. Fluid Mech. 216, 381.CrossRefGoogle Scholar
Jenny, M., Bouchet, G. & Dusek, J. 2003 Nonvertical ascension of fall of a free sphere in a newtonian fluid. Phys. Fluids 15, L9L12.CrossRefGoogle Scholar
Jenny, M., Dusek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Karamanev, D. G., Chavarie, C. & Mayer, R. C. 1996 Dynamics of the free rise of a light solid sphere in liquid. AIChE J. 42, 17891792.CrossRefGoogle Scholar
Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Butterworth-Heinemann.Google Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Lin, C., Peery, J. H. & Schowalter, W. R. 1970 Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech. 44, 117.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.CrossRefGoogle Scholar
Magnaudet, J. & Legendre, D. 1998 Some aspects of the lift force on a spherical bubble. Appl. Sci. Res. 58, 441461.CrossRefGoogle Scholar
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. J. Fluid Mech. 284, 97135.CrossRefGoogle Scholar
Mazzitelli, I., Lohse, D. & Toschi, F. 2003 On the relevance of the lift force in bubbly turbulence. J. Fluid Mech. 488, 283313.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2002 Path instability of a rising bubble. Phys. Rev. Lett. 88, 014502.CrossRefGoogle ScholarPubMed
Naciri, M. A. 1992 Contribution à l'étude des forces exercées par un liquide sur une bulle de gaz: portance, masse ajoutée et interactions hydrodynamiques. PhD thesis, L'Ecole Centrale de Lyon, Ecully, France.Google Scholar
Rastello, M., Mari, J., Grosjean, N. & Lance, M. 2009 Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow. J. Fluid Mech. 624, 159178.CrossRefGoogle Scholar
Rubinov, R. & Keller, J. B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447459.CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1995 The formation mechanism and shedding frequency vortices from a sphere in uniform shear-flow. J. Fluid Mech. 287, 151171.CrossRefGoogle Scholar
Shaw, W. L., Poncett, S & Pinton, J. F. 2006 Force measurements on rising bubbles. J. Fluid Mech. 569, 5160.CrossRefGoogle Scholar
Van Nierop, E. A., Luther, S., Bluemink, J. J., Magnaudet, J., Prosperetti, A. & Lohse, D. 2007 Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439454.CrossRefGoogle Scholar
Veldhuis, C. H. J., Biesheuvel, A., van Wijngaarden, L. & Lohse, D. 2005 Motion and wake structure of spherical particles. Nonlinearity 18, C1C8.CrossRefGoogle Scholar
Zhang, Z. & Prosperetti, A. 2005 A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210, 292324.CrossRefGoogle Scholar