Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T18:46:04.783Z Has data issue: false hasContentIssue false

Dissipative small-scale actuation of a turbulent shear layer

Published online by Cambridge University Press:  02 June 2010

B. VUKASINOVIC*
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
Z. RUSAK
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
A. GLEZER
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
*
Email address for correspondence: [email protected]

Abstract

The effects of small-scale dissipative fluidic actuation on the evolution of large- and small-scale motions in a turbulent shear layer downstream of a backward-facing step are investigated experimentally. Actuation is applied by modulation of the vorticity flux into the shear layer at frequencies that are substantially higher than the frequencies that are typically amplified in the near field, and has a profound effect on the evolution of the vortical structures within the layer. Specifically, there is a strong broadband increase in the energy of the small-scale motions and a nearly uniform decrease in the energy of the large-scale motions which correspond to the most amplified unstable modes of the base flow. The near field of the forced shear layer has three distinct domains. The first domain (x0 < 50) is dominated by significant concomitant increases in the production and dissipation of turbulent kinetic energy and in the shear layer cross-stream width. In the second domain (50 < x0 < 300), the streamwise rates of change of these quantities become similar to the corresponding rates in the unforced flow although their magnitudes are substantially different. Finally, in the third domain (x0 > 350) the inviscid instability of the shear layer re-emerges in what might be described as a ‘new’ baseline flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arunajatesan, S., Shipman, J. D. & Sinha, N. 2002 Hybrid RANS-LES simulation of cavity flow fields with control. Paper 2002–1130. AIAA.Google Scholar
Ben-Hamou, E., Arad, E. & Seifert, A. 2007 Generic transport aft-body drag reduction using active flow control. Flow Turbul. Combust. 78, 365382.Google Scholar
Bower, W. W., Kibens, V., Cary, A. W., Alvi, F. S., Raman, G., Annaswamy, A. & Malmuth, N. M. 2004 High-frequency excitation active flow control for high-speed weapon release (HIFEX). Paper 2004–2513. AIAA.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Cain, A. B., Rogers, M. M., Kibens, V. & Raman, G. 2001 Simulations of high-frequency excitation of a plane wake. Paper 2001–0514. AIAA.Google Scholar
Cattafesta, L. N., Song, Q., Williams, D. R., Rowley, C. W. & Alvi, F. S. 2008 Active control of flow-induced cavity oscillations. Prog. Aerosp. Sci. 44, 479502.CrossRefGoogle Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.CrossRefGoogle Scholar
Debiasi, M. & Samimy, M. 2003 An experimental study of the cavity flow for closed-loop flow control. Paper 2003–4003. AIAA.Google Scholar
Erk, P. P. 1997 Separation control on a post-stall airfoil using acoustically generated perturbations. PhD dissertation, Hermann-Föttinger-Institut für Strömungsmechanik, Technische Universität Berlin.Google Scholar
Glezer, A., Amitay, M. & Honohan, A. M. 2005 Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J. 43, 15011511.CrossRefGoogle Scholar
Greenblatt, D. & Wygnanski, I. J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36, 487545.Google Scholar
Gutmark, E. J., Schadow, K. C. & Yu, K. H. 1995 Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375417.CrossRefGoogle Scholar
Hawa, T. & Rusak, Z. 2001 The dynamics of a laminar flow in a symmetric channel with a sudden expansion. J. Fluid Mech. 436, 283320.CrossRefGoogle Scholar
Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.Google Scholar
Honohan, A. M., Amitay, M. & Glezer, A. 2000 Aerodynamic control using synthetic jets. Paper 2000–2401. AIAA.Google Scholar
Hussain, A. K. M. F. & Hasan, M. A. Z. 1985 Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159168.CrossRefGoogle Scholar
Lucas, D. G. 2005 High frequency direct excitation of small-scale motions in planar shear flows. MS thesis, Georgia Institute of Technology, Atlanta, GA.Google Scholar
Michalke, A. 1964 On the inviscid instability of the hyperbolictangent velocity profile. J. Fluid Mech. 19 (4), 543556.CrossRefGoogle Scholar
Morris, S. C. & Foss, J. F. 2003 Turbulent boundary layer to single-stream shear layer: the transition region. J. Fluid Mech. 494, 187221.CrossRefGoogle Scholar
Nallasamy, M. & Hussain, A. K. M. F. 1989 Effects of excitation on turbulence levels in a shear layer. Trans. ASME J. Fluids Engng 111, 102104.CrossRefGoogle Scholar
Oljaca, M. & Glezer, A. 2009 The effects of induced dissipative small-scale motions and mixing on optical distortion in a plane shear layer. J. Fluid Mech. 619, 295329.CrossRefGoogle Scholar
Roberts, F. A. & Roshko, A. 1985 Effects of a periodic forcing on mixing in turbulent shear layers and wakes. Paper 85–0570. AIAA.Google Scholar
Rockwell, D. O. 1972 External excitation of planar jets. Trans. ASME J. Appl. Mech. 39, 883890.CrossRefGoogle Scholar
Rockwell, D. & Naudascher, E. 1978 Review: self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 100, 152165.Google Scholar
Rusak, Z. & Eisele, I. 2005 Controlled manipulation of small and large scales in a turbulent shear layer. Part II. Stability studies. Paper 2005–4754. AIAA.Google Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of a Mach 0.9 jet for noise mitigation using plasma actuators. AIAA J. 45, 890901.CrossRefGoogle Scholar
Shaw, L. L., Smith, B. R. & Saddoughi, S. 2006 Full-scale flight demonstration of active control of a pod wake. Paper 2006–3185. AIAA.Google Scholar
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids 10, 22812297.CrossRefGoogle Scholar
Stanek, M. J., Raman, G., Kibens, V., Ross, J. A., Odedra, J. & Peto, J. 2000 Control of cavity resonance through very high frequency forcing. Paper 2000–1905. AIAA.Google Scholar
Stanek, M. J., Raman, G., Ross, J. A., Odedra, J., Peto, J., Alvi, F. & Kibens, V. 2002 High frequency acoustic suppression: the role of mass flow, the notion of superposition, and the role of inviscid instability – a new model (Part II). Paper 2002–2404. AIAA.Google Scholar
Stanek, M. J., Visbal, M. R., Rizzetta, D. P., Rubin, S. G. & Khosla, P. K. 2007 On a mechanism of stabilizing turbulent free shear layers in cavity flows. Comput. Fluids 36, 16211637.CrossRefGoogle Scholar
Tanaka, T. & Eaton, J. K. 2007 A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp. Fluids 42, 893902.CrossRefGoogle Scholar
Unal, M. F. & Rockwell, D. 1988 On vortex formation from a cylinder. Part 1. The initial instability. J. Fluid Mech. 190, 491512.CrossRefGoogle Scholar
Visbal, M. & Rizzetta, D. 2008 Effect of flow excitation on aero-optical aberration. Paper 2008–1074. AIAA.Google Scholar
Vlasov, E. V. & Ginevskii, A. S. 1973 Generation and suppression of turbulence in an axisymmetric turbulent jet under an acoustic effect. J. Fluid Dyn. 8, 881885.CrossRefGoogle Scholar
Vukasinovic, B. & Glezer, A. 2006 Transitory fluidic control of turbulent shear flows. Paper 2006–3227. AIAA.Google Scholar
Vukasinovic, B. & Glezer, A. 2007 Control of a separating flow over a turret. Paper 2007–4506. AIAA.Google Scholar
Vukasinovic, B., Glezer, A., Gordeyev, S., Jumper, E. & Kibens, V. 2009 Fluidic control of a turret wake. Part I. Aerodynamic effects. Paper 2009–816. AIAA.Google Scholar
Vukasinovic, B., Lucas, D. G. & Glezer, A. 2004 Direct manipulation of small-scale motions in a plane shear layer. Paper 2004–2617. AIAA.Google Scholar
Vukasinovic, B., Lucas, D. G. & Glezer, A. 2005 Controlled manipulation of small- and large-scales in a turbulent shear layer. Part I. Experimental studies. Paper 2005–4753. AIAA.Google Scholar
Wiltse, J. M. & Glezer, A. 1993 Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech. 249, 261285.CrossRefGoogle Scholar
Wiltse, J. M. & Glezer, A. 1998 Direct excitation of small scale motions in free shear flows. Phys. Fluids 8, 20262036.CrossRefGoogle Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing, the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237255.CrossRefGoogle Scholar
Wu, J.-Z., Lu, X.-Y., Denny, A. G., Fan, M. & Wu, J.-M. 1998 Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 2158.Google Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Rice, E. J. 1992 On the mechanism of turbulence suppression in free shear flows under acoustic excitation. Tech. Memo. 105360. NASA.CrossRefGoogle Scholar
Zubair, F. R., Freeman, A. P., Piatrovich, S., Shockro, J., Ibrahim, Y. N. & Catrakis, H. J. 2007 Large scale turbulence suppression control for direct reduction of aero-optical aberrations. Paper 2007–4008. AIAA.Google Scholar