Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T05:54:42.874Z Has data issue: false hasContentIssue false

Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening

Published online by Cambridge University Press:  23 February 2017

Haiou Wang*
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales, NSW 2052, Australia
Evatt R. Hawkes
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales, NSW 2052, Australia School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, NSW 2052, Australia
Jacqueline H. Chen
Affiliation:
Sandia National Laboratories, Livermore, CA 94550, USA
Bo Zhou
Affiliation:
Division of Combustion Physics, Lund University, P.O. Box 118, S221 00 Lund, Sweden
Zhongshan Li
Affiliation:
Division of Combustion Physics, Lund University, P.O. Box 118, S221 00 Lund, Sweden
Marcus Aldén
Affiliation:
Division of Combustion Physics, Lund University, P.O. Box 118, S221 00 Lund, Sweden
*
Email address for correspondence: [email protected]

Abstract

This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven by flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. High curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashurst, W. T., Peters, N. & Smooke, M. D. 1987 Numerical simulation of turbulent flame structure with non-unity Lewis number. Combust. Sci. Technol. 53, 339375.CrossRefGoogle Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2011 Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287320.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F. & Filatyev, S. A. 2007 Numerical simulation of a laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31, 12991307.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Johnson, M. R., Cheng, R. K. & Shepherd, I. G. 2005 Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Natl Acad. Sci. USA 102, 1000610011.CrossRefGoogle ScholarPubMed
Candel, S. M. & Poinsot, T. J. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70, 115.CrossRefGoogle Scholar
Carlsson, H., Yu, R. & Bai, X. S. 2015 Flame structure analysis for categorization of lean premixed CH4/air and H2/air flames at high Karlovitz numbers: direct numerical simulation studies. Proc. Combust. Inst. 35, 14251432.CrossRefGoogle Scholar
Chakraborty, N. 2007 Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids 19, 105109.CrossRefGoogle Scholar
Chakraborty, N. & Cant, S. 2005 Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids 19, 065108.Google Scholar
Chakraborty, N. & Swaminathan, N. 2007 Influence of the Damköhler number on turbulence–scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103.Google Scholar
Chatakonda, O., Hawkes, E. R., Aspden, A. J., Kerstein, A. R., Kolla, H. & Chen, J. H. 2013 On the fractal characteristics of low Damköhler number flames. Combust. Flame 160, 24222433.CrossRefGoogle Scholar
Chen, J. H. 2011 Petascale direct numerical simulation of turbulent combustion – fundamental insights towards predictive models. Proc. Combust. Inst. 27, 819826.CrossRefGoogle Scholar
Chen, J. H., Choudhary, A., Supinski, B. D., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N. et al. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001.CrossRefGoogle Scholar
Chen, J. H. & Im, H. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst. 33, 99123.CrossRefGoogle Scholar
Chen, Y. C. & Mansour, M. S. 1998 Investigation of flame broadening in turbulent premixed flames in the thin reaction zones regime. Proc. Combust. Inst. 27, 811818.CrossRefGoogle Scholar
Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V. & Cheng, R. K. 2011 A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. Methane flames. Combust. Flame 159, 275290.CrossRefGoogle Scholar
Dopazo, C., Cifuentes, L., Martín, J. & Jiménez, C. 2015 Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162, 17291736.CrossRefGoogle Scholar
Dunn, M. J., Masri, A. R. & Bilger, R. W. 2007 A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 4660.CrossRefGoogle Scholar
Dunn, M. J., Masri, A. R., Bilger, R. W. & Barlow, R. S. 2010 Finite rate chemistry effects in highly sheared turbulent premixed flames. Flow Turbul. Combust. 85, 621648.CrossRefGoogle Scholar
Duwig, C. & Dunn, M. J. 2013 Large eddy simulation of a premixed jet flame stabilized by a vitiated co-flow: evaluation of auto-ignition tabulated chemistry. Combust. Flame 160, 28792895.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 1999 Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118, 308311.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 2003 Direct numerical simulation of autoignition in non-homogeneous hydrogen–air mixtures. Combust. Flame 134, 169191.CrossRefGoogle Scholar
Fayoux, A., Zähringerc, K., Gicquela, O. & Rolon, J. C. 2005 Experimental and numerical determination of heat release in counterflow premixed laminar flames. Proc. Combust. Inst. 30, 251257.CrossRefGoogle Scholar
Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence. I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11, 23052317.CrossRefGoogle Scholar
Hawkes, E. R., Chatakonda, O., Kolla, H., Kerstein, A. R. & Chen, J. H. 2012 A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159, 26902703.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2005 Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647655.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2006 Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combust. Flame 144, 112125.CrossRefGoogle Scholar
Hawkes, E. R., Sankaran, R. & Chen, J. H. 2011 Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements. Proc. Combust. Inst. 33, 14471454.CrossRefGoogle Scholar
Karami, S., Hawkes, E. R., Talei, M & Chen, J. H. 2015 Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame. J. Fluid Mech. 777, 633689.CrossRefGoogle Scholar
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14, 367458.CrossRefGoogle Scholar
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35, 177264.CrossRefGoogle Scholar
Kim, S. H. & Pitsch, H. 2007 Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19, 115104.CrossRefGoogle Scholar
Kollmann, W. & Chen, J. H. 1998 Pocket formation and the flame surface density equation. Proc. Combust. Inst. 27, 927934.CrossRefGoogle Scholar
Krisman, A., Hawkes, E. R., Talei, M., Bhagatwala, A. & Chen, J. H. 2015 Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions. Proc. Combust. Inst. 35, 9991006.CrossRefGoogle Scholar
Lapointe, S., Savard, B. & Blanquart, G. 2015 Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust. Flame 162, 33413355.CrossRefGoogle Scholar
Lu, T. F. & Law, C. K. 2008 A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154, 761774.CrossRefGoogle Scholar
Moureau, V., Domingo, P. & Vervisch, L. 2011 From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame 158, 13401357.CrossRefGoogle Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Poludnenko, A. Y. & Oran, E. S. 2010 The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 9951011.CrossRefGoogle Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26, 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Riley, J. J., Metcalfe, R. W. & Orszag, S. A. 1986 Direct numerical simulations of chemically reacting turbulent mixing layers. Phys. Fluids 29, 406422.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2007 Structure of a spatially developing turbulent lean methane–air bunsen flame. Proc. Combust. Inst. 31, 12911298.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E. R., Yoo, C. S. & Chen, J. H. 2015 Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames. Combust. Flame 162, 32943306.CrossRefGoogle Scholar
Savard, B., Bobbitt, B. & Blanquart, G. 2015 Structure of a high Karlovitz nC7H16 premixed turbulent flame. Proc. Combust. Inst. 35, 13771384.CrossRefGoogle Scholar
Skiba, A. W., Wabel, T. M., Temme, J. & Driscoll, J. F.2016 Experimental assessment of premixed flames subjected to extreme turbulence. 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1454.Google Scholar
Swaminathan, N. & Grout, R. W. 2006 Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102.CrossRefGoogle Scholar
Tamadonfar, P. & Gülder, Ö. L. 2015 Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combust. Flame 162, 115128.CrossRefGoogle Scholar
Trouvé, A. & Poinsot, T. 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 131.CrossRefGoogle Scholar
Vervisch, L., Bidaux, E., Bray, K. N. C. & Kollmann, W. 1995 Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7, 24962503.CrossRefGoogle Scholar
Veynante, D. & Vervisch, L. 2002 Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193266.CrossRefGoogle Scholar
Wang, H., Hawkes, E. R. & Chen, J. H. 2016 Turbulence–flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095107.CrossRefGoogle Scholar
Wang, H., Hawkes, E. R., Zhou, B., Chen, J. H., Li, Z. & Aldén, M. 2017 A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane–air premixed jet flame at high Karlovitz number. Proc. Combust. Inst. 36, 20452053.CrossRefGoogle Scholar
Yamaguchi, H. 2008 Engineering Fluid Mechanics. Springer Science & Business Media.Google Scholar
Yoo, C. S., Sankaran, R. & Chen, J. H. 2009 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453481.CrossRefGoogle Scholar
Zhou, B., Brackmann, C., Li, Z., Aldén, M. & Bai, X. S. 2015b Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35, 14091416.CrossRefGoogle Scholar
Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M. & Bai, X. S. 2015a Distributed reactions in highly turbulent premixed methane/air flames: part I. Flame structure characterization. Combust. Flame 162, 29372953.CrossRefGoogle Scholar
Supplementary material: File

Wang supplementary material

Wang supplementary material 1

Download Wang supplementary material(File)
File 12.9 KB