Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T06:27:26.307Z Has data issue: false hasContentIssue false

Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve

Published online by Cambridge University Press:  10 March 2009

M. D. DE TULLIO
Affiliation:
DIMeG and CEMeC, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
A. CRISTALLO
Affiliation:
DIMeG and CEMeC, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
E. BALARAS
Affiliation:
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
R. VERZICCO*
Affiliation:
DIM, Università di Roma ‘Tor Vergata’, Via del Politecnico 1, 00133 Roma, Italy
*
Email address for correspondence: [email protected]

Abstract

This work focuses on the direct numerical simulation of the pulsatile flow through a bileaflet mechanical heart valve under physiological conditions and in a realistic aortic root geometry. The motion of the valve leaflets has been computed from the forces exerted by the fluid on the structure both being considered as a single dynamical system. To this purpose the immersed boundary method, combined with a fluid–structure interaction algorithm, has shown to be an inexpensive and accurate technique for such complex flows. Several complete flow cycles have been simulated in order to collect enough phase-averaged statistics, and the results are in good agreement with experimental data obtained for a similar configuration. The flow analysis, strongly relying on the data accessibility provided by the numerical simulation, shows how some features of the leaflets motion depend on the flow dynamics and that the criteria for the red cell damages caused by the valve need to be formulated using very detailed analysis. In particular, it is shown that the standard Eulerian computation of the Reynolds stresses, usually employed to assess the risk of haemolysis, might not be adequate on several counts: (i) Reynolds stresses are only one part of the solicitation, the other part being the viscous stresses, (ii) the characteristic scales of the two solicitations are very different and the Reynolds stresses act on lengths much larger than the red cells diameter and (iii) the Eulerian zonal assessment of the stresses completely misses the information of time exposure to the solicitation which is a fundamental ingredient for the phenomenon of haemolysis. Accordingly, the trajectories of several fluid particles have been tracked in a Lagrangian way and the pointwise instantaneous viscous stress tensor has been computed along the paths. The tensor has been then reduced to an equivalent scalar using the von Mises criterion, and the blood damage index has been evaluated following Grigioni et al. (Biomech. Model Mechanobiol., vol. 4, 2005, p. 249).

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alemu, Y. & Bluestein, D. 2007 Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31 (9), 677688.CrossRefGoogle Scholar
Apel, J., Reinhard, P., Klaus, S., Siess, T. & Reul, H. 2001 Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 25 (5), 341347.CrossRefGoogle Scholar
Blackshear, P. L., Dorman, F. D. & Steinbach, J. H. 1965 Some mechanical effects that influence hemolysis. Trans. Am. Soc. Artif. Intern. Organs 11, 112118.CrossRefGoogle ScholarPubMed
Borazjani, I., Ge, L., Dasi, P. L., Sotiropoulos, F. & Yoganathan, A. P. 7–8 June 2007 Fluid-structure interaction in bi-leaflet mechanical heart valves. In 2nd Frontier in Biomedical Devices Conference, California, USA, BioMed 2007-3807.CrossRefGoogle Scholar
Borazjani, I., Ge, L. & Sotiropulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3d rigid bodies. J. Comput. Phys. 227, 75877620.CrossRefGoogle ScholarPubMed
Brücker, C., Steinseifer, U., Schröder, W. & Reul, H. 2002 Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry. Meas. Sci. Technol. 13, 10431049.CrossRefGoogle Scholar
Caro, C. G., Pedley, T. J., Schroter, R. C. & Seed, W. A. 1978 The Mechanics of the Circulation. Oxford University Press.Google Scholar
Causin, P., Gerbeau, J. F. & Nobile, F. 2005 Added-mas effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engng 194, 45064527.CrossRefGoogle Scholar
Cerroni, G. 2006 Studio sperimentale del campo fluidodinamico a valle di una valvola cardiaca artificiale e in un dispositivo di circolazione assistita mediante tecnica PIV. Master's thesis, Universita' degli studi di Roma, La Sapienza, Facolta' di Ingegneria.Google Scholar
Cheng, R., Lai, Y. G. & Chandran, K. B. 2004 Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Engng 32 (13), 14711483.CrossRefGoogle ScholarPubMed
Cristallo, A. & Verzicco, R. 2006 Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flow Turbul. Combust. 77, 326.CrossRefGoogle Scholar
Dasi, L. P., Ge, L., Simon, H. A., Sotiropoulos, F. & Yoganathan, A. P. 2007 Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19, 117.CrossRefGoogle Scholar
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yosuf, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.CrossRefGoogle Scholar
Fallon, A. M., Marzec, U. M., Hanson, S. R. & Yoganathan, A. P. 2007 Thrombin formation in vitro in response to shear-induced activation of platelets. Thrombosis Res. 121, 397406.CrossRefGoogle ScholarPubMed
Fontaine, A. A., Ellis, J. T., Healy, T. M., Hopmeyer, J. & Yoganathan, A. P. 1996 Identification of peak stresses in cardiac prostheses. A comparison of two-dimensional versus three-dimensional principal stress analyses. ASAIO J. 42, 154163.Google ScholarPubMed
Ge, L., Dasi, L. P., Sotiropulos, F. & Yoganathan, A. P. 2008 Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomech. Engng 36, 276297.CrossRefGoogle ScholarPubMed
Ge, L., Leo, H. L., Sotiropulos, F. & Yoganathan, A. P. 2005 Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Engng 127, 782797.CrossRefGoogle Scholar
Giersiepen, M., Wurzinger, L. J., Opitz, R. & Reul, H. 1990 Estimation of shear stress related blood damage in heart valve prosteses: In vitro comparison of 25 aortic valves. Intl J. Artif. Organs 13 (5), 300306.CrossRefGoogle Scholar
Grigioni, M., Morbiducci, U., D'Avenio, G., Di Benedetto, G. & Del Gaudio, C. 2005 A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model Mechanobiol. 4, 249260.CrossRefGoogle ScholarPubMed
Hinze, J. O. 1975 Turbulence. Mc Graw & Hill.Google Scholar
Iaccarino, G. & Verzicco, R. 2003 Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56, 331347.CrossRefGoogle Scholar
Kini, V., Bachmann, C., Fontaine, A., Deutsch, S. & Tarbell, J. M. 2000 Flow visualization in mechanical heart valves: occluder rebound and cavitation potential. Ann. Biomed. Engng 28, 431441.CrossRefGoogle ScholarPubMed
Ku, D. N. & Liepsch, D. W. 1986 The effects of non-Newtonian viscoelasticity and wall elasticity on flow at 90 degrees bifurcation. Biorheology 23, 359370.CrossRefGoogle ScholarPubMed
Le Tallec, P. & Mouro, J. 2001 Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Engng 190, 30393067.CrossRefGoogle Scholar
Liepsch, D. W. 1986 Flows in tubes and arteries: a comparison. Biorheology 23, 395433.CrossRefGoogle Scholar
Liepsch, D. W., Pflugbeil, G., Matsuo, T. & Lesniak, B. 1998 Flow visualization in 1- and 3-d laser–doppler–anemometer measurements in model of human carotid arteries. J. Clin. Hemorheol. Microcirc. 18, 130.Google ScholarPubMed
Liu, J. S., Lu, P. C. & Chu, S. H. 2000 Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Engng 122, 118124.CrossRefGoogle ScholarPubMed
Malvern, L. E. (1977) Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Inc.Google Scholar
Myers, M. R. & Porter, J. M. 2003 Impulsive-motion model for computing the closing motion of mechanical heart-valve leaflets. Ann. Biomed. Engng 31, 10311039.CrossRefGoogle ScholarPubMed
Nichols, W. W. & O'Rourke, M. F. 1990 McDonald's Blood Flow in Arteries. Lea & Febiger.Google Scholar
Pedrizzetti, G. & Domenichini, F. 2006 Flow-driven opening of a valvular leaflet. J. Fluid Mech. 569, 321330.CrossRefGoogle Scholar
Pedrizzetti, G. & Domenichini, F. 2007 Asymmetric opening of a simple bi-leaflet valve. Phys. Rev. Lett. 98, 214503.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Popov, E. P. 1976 Mechanics of Materials, 2nd ed.Prentice Hall Inc.Google Scholar
Romano, G. P. 2008 Deliverable d24-study case report n 2 pulse duplicator with aortic root model from rwth aachen smart-piv ist-2002-37548 European project. Available at http://www.smart–piv.com.Google Scholar
Smith, R., Blick, E., Coalson, J. & Stein, P. 1972 Thrombus production by turbulence. J. Appl. Physiol. 32, 261264.CrossRefGoogle ScholarPubMed
Sorin-Group 2006 Sorin Biomedica. Available at http://www.sorinbiomedica.com.Google Scholar
Stein, P. D. & Sabbah, M. N. 1974 Measured turbulence and its effect on thrombus formation. Circ. Res. 35, 608614.CrossRefGoogle ScholarPubMed
Swartzrauber, P. N. 1974 A direct method for the discrete solution of separable elliptic equations. SIAM J. Numer. Anal. 11, 11361150.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402413.CrossRefGoogle Scholar
Whitmore, R. L. 1968 Rheology of the Circulation. Pergamon Press.Google Scholar
Woo, Y. R. & Yoganathan, A. P. 1985 In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prostheses. Life Support Syst. 3, 283312.Google ScholarPubMed
Yang, J. & Balaras, E. 2006 An embeddedboundary formulation for large eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215, 1240.CrossRefGoogle Scholar
Yang, J., Preidikman, S. & Balaras, E. 2008 A strongly-coupled embedded boundary method for fluid–structure interaction of elastically mounted rigid bodies. J. Fluids Struct. 182, 167182.CrossRefGoogle Scholar
Yoganathan, A. P., He, Z. & Jones, S. C. 2004 Fluid mechanics of heart valves. Annu. Rev. Biomed. Engng 6, 331362.CrossRefGoogle ScholarPubMed
Yokoyama, Y., Medart, D., Hormes, M., Schmitz, C., Hamilton, K., Kwant, P. B., Takatani, S., Schmitz-Rode, T. & Steinseifer, U. 2006 CFD simulation of a novel bileaflet mechanical heart valve prosthesis – an estimation of the Venturi passage formed by the leaflets. Intl J. Artif. Organs 29 (12), 11321139.CrossRefGoogle ScholarPubMed