Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-31T23:52:38.889Z Has data issue: false hasContentIssue false

Direct numerical simulation of a supercritical hydrothermal flame in a turbulent jet

Published online by Cambridge University Press:  09 July 2021

Tai Jin
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, PR China School of Aeronautics and Astronautics, Zhejiang University, Hangzhou310027, PR China
Changcheng Song
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, PR China
Haiou Wang
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, PR China
Zhengwei Gao
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, PR China
Kun Luo
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, PR China
Jianren Fan*
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, PR China
*
Email address for correspondence: [email protected]

Abstract

The aim of this study is to establish a fundamental understanding of the flame structure and autoignition characteristics of supercritical hydrothermal flames in three-dimensional shear-driven turbulence. The study involves direct numerical simulation of a non-premixed flame (with fuel comprising a mixture of 10 % $\textrm {H}_2$ and 90 % $\textrm {H}_2\textrm {O}$ in terms of mole fraction) at 25.0 MPa in a slot jet; detailed reaction mechanism and multispecies real-fluid properties are considered in the simulation. Qualitative transient inspection revealed that the flame undergoes a three-stage development process in the streamwise direction: sparse autoignition kernels in the upstream region, intense ignitions and establishment of a continuous flame surface in the middle region, and massive flamelets in the downstream region. Ignition kernels primarily form in the interior of large-scale shear-driven vortices featuring a low scalar dissipation rate. Probability density function (p.d.f.) analysis further confirmed that these kernels mainly form in the premixed combustion mode and on the fuel-lean side, in contrast to the authors’ previous findings concerning autoignition in a two-dimensional mixing layer. Analysis of the preignition chemistry indicator (i.e. $\textrm {H}_2\textrm {O}_{2}$ radicals) revealed that although the fuel-rich condition has a shorter homogeneous autoignition delay time, it does not exhibit any remarkable preignition chemistry or intense heat release in the upstream or middle regions because of its large-scale flow structure. A volume rendering of the dimensionless Damköhler number ($Da$) reveals the distribution of autoignition spots and propagating flames. The joint p.d.f. of the mixture fraction and $Da$ reveals the transition from sparse ignition to intense ignition and, finally, to flame propagation.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Noman, S.M., Choi, S.K. & Chung, S.H. 2016 Numerical study of laminar nonpremixed methane flames in coflow jets: autoignited lifted flames with tribrachial edges and mild combustion at elevated temperatures. Combust. Flame 171, 119132.CrossRefGoogle Scholar
Arcelus-Arrillaga, P., Pinilla, J.L., Hellgardt, K. & Millan, M. 2017 Application of water in hydrothermal conditions for upgrading heavy oils: A review. Energy Fuels 31 (5), 45714587.CrossRefGoogle Scholar
Augustine, C., Potter, J., Potter, R. & Tester, J.W. 2007 Feasibility of spallation drilling in a high pressure, high-density, aqueous environment: characterization of heat transfer from an H2-O2 flame jet. Geotherm. Resour. Counc. Trans. 31, 241245.Google Scholar
Augustine, C. & Tester, J.W. 2009 Hydrothermal flames: from phenomenological experimental demonstrations to quantitative understanding. J. Supercrit. Fluid 47 (3), 415430.CrossRefGoogle Scholar
Bell, I.H., Wronski, J., Quoilin, S. & Lemort, V. 2014 Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Engng Chem. Res. 53 (6), 24982508.CrossRefGoogle ScholarPubMed
Brunner, G. 2014 a Chapter 11 – hydrothermal and supercritical water processing of inorganic substances. In Hydrothermal and Supercritical Water Processes (ed. G. Brunner), Supercritical Fluid Science and Technology, vol. 5, pp. 569–589. Elsevier.CrossRefGoogle Scholar
Brunner, G. 2014 b Chapter 2 – properties of pure water. In Hydrothermal and Supercritical Water Processes (ed. G. Brunner), Supercritical Fluid Science and Technology, vol. 5, pp. 31–33. Elsevier.CrossRefGoogle Scholar
Childs, H. 2012 VisIt: an end-user tool for visualizing and analyzing very large data. Lawrence Berkeley National Laboratory. Retrieved from https://escholarship.org/uc/item/69r5m58v.Google Scholar
Choi, B.C., Kim, K.N. & Chung, S.H. 2009 Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion. Combust. Flame 156 (2), 396404.CrossRefGoogle Scholar
Chung, T.H., Ajlan, M., Lee, L.L. & Starling, K.E. 1988 Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Engng Chem. Res. 27 (4), 671679.CrossRefGoogle Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227 (15), 71257159.CrossRefGoogle Scholar
Domingo, P. & Vervisch, L. 1996 Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures. Proc. Combust. Inst. 26 (1), 233240.CrossRefGoogle Scholar
Echekki, T. & Chen, J.H. 2003 Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust. Flame 134 (3), 169191.CrossRefGoogle Scholar
Fleck, J.M., Griebel, P., Steinberg, A.M., Arndt, C.M. & Aigner, M. 2013 Auto-ignition and flame stabilization of hydrogen/natural gas/nitrogen jets in a vitiated cross-flow at elevated pressure. Intl J. Hydrogen Energy 38 (36), 1644116452.CrossRefGoogle Scholar
Guo, L. & Jin, H. 2013 Boiling coal in water: hydrogen production and power generation system with zero net co2 emission based on coal and supercritical water gasification. Intl J. Hydrogen Energy 38 (29), 1295312967.CrossRefGoogle Scholar
Guo, L., Jin, H., Ge, Z., Lu, Y. & Cao, C. 2015 Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission. Sci. China Technol. Sci. 58 (12), 19892002.CrossRefGoogle Scholar
Harstad, K.G., Miller, R.S. & Bellan, J. 1997 Efficient high-pressure state equations. AIChE J. 43 (6), 16051610.CrossRefGoogle Scholar
Hicks, M.C., Hegde, U.G. & Kojima, J.J. 2019 Hydrothermal ethanol flames in co-flow jets. J. Supercrit. Fluid 145, 192200.CrossRefGoogle ScholarPubMed
Holgate, H.R. & Tester, J.W. 1993 Fundamental kinetics and mechanisms of hydrogen oxidation in supercritical water. Combust. Sci. Technol. 88, 369397.CrossRefGoogle Scholar
Ihme, M. & See, Y.C. 2010 Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 157 (10), 18501862.CrossRefGoogle Scholar
Jiménez, C. & Cuenot, B. 2007 DNS study of stabilization of turbulent triple flames by hot gases. Proc. Combust. Inst. 31 (1), 16491656.CrossRefGoogle Scholar
Kerkemeier, S.G., Markides, C.N., Frouzakis, C.E. & Boulouchos, K. 2013 Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air. J. Fluid Mech. 720, 424456.CrossRefGoogle Scholar
Kojima, J.J., Hegde, U.G., Gotti, D.J. & Hicks, M.C. 2020 Flame structure of supercritical ethanol/water combustion in a co-flow air stream characterized by raman chemical analysis. J. Supercrit. Fluids 166, 104995.CrossRefGoogle Scholar
Kriksunov, L.B. & Macdonald, D.D. 1995 Corrosion in supercritical water oxidation systems: A phenomenological analysis. J. Electrochem. Soc. 142 (12), 40694073.CrossRefGoogle Scholar
Krisman, A., Hawkes, E.R. & Chen, J.H. 2017 Two-stage autoignition and edge flames in a high pressure turbulent jet. J. Fluid Mech. 824, 541.CrossRefGoogle Scholar
Krisman, A., Hawkes, E.R., Talei, M., Bhagatwala, A. & Chen, J.H. 2016 Characterisation of two-stage ignition in diesel engine-relevant thermochemical conditions using direct numerical simulation. Combust. Flame 172, 326341.CrossRefGoogle Scholar
Luo, K., Wang, H., Yi, F. & Fan, J. 2012 Direct numerical simulation study of an experimental lifted H2/N2 flame. Part 1: validation and flame structure. Energy & Fuels 26 (10), 61186127.CrossRefGoogle Scholar
Ma, P.C., Banuti, D.T., Hickey, J.-P. & Ihme, M. 2017 Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach. In 55th AIAA Aerospace Sciences Meeting. AIAA paper, 2017-0143.Google Scholar
Markides, C.N. & Mastorakos, E. 2005 An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30 (1), 883891.CrossRefGoogle Scholar
Mastorakos, E. 2009 Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35 (1), 5797.CrossRefGoogle Scholar
Mastorakos, E., Baritaud, T.A. & Poinsot, T.J. 1997 Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109 (1), 198223.CrossRefGoogle Scholar
Minamoto, Y. & Chen, J.H. 2016 DNS of a turbulent lifted DME jet flame. Combust. Flame 169, 3850.CrossRefGoogle Scholar
Moureau, V., Domingo, P. & Vervisch, L. 2011 From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling. Combust. Flame 158 (7), 13401357.CrossRefGoogle Scholar
Narayanan, C., Frouzakis, C., Boulouchos, K., Príkopský, K., Wellig, B. & Rudolf von Rohr, P. 2008 Numerical modelling of a supercritical water oxidation reactor containing a hydrothermal flame. J. Supercrit. Fluid 46, 149155.CrossRefGoogle Scholar
Peng, D.-Y. & Robinson, D.B. 1976 A new two-constant equation of state. Ind. Engng Chem. Fundam. 15 (1), 5964.CrossRefGoogle Scholar
Pierce, C.D. & Moin, P. 2004 Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 7397.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Reddy, S.N., Nanda, S., Hegde, U.G., Hicks, M.C. & Kozinski, J.A. 2015 Ignition of hydrothermal flames. RSC Adv. 5 (46), 3640436422.CrossRefGoogle Scholar
Reddy, S.N., Nanda, S., Hegde, U.G., Hicks, M.C. & Kozinski, J.A. 2017 Ignition of n-propanol–air hydrothermal flames during supercritical water oxidation. Proc. Combust. Inst. 36 (2), 25032511.CrossRefGoogle Scholar
Sierra-Pallares, J., Teresa Parra-Santos, M, García-Serna, J., Castro, F., José, C. & Cocero, M.J. 2009 Numerical modelling of hydrothermal flames, micromixing effects over turbulent reaction rates. J. Supercrit. Fluid 50, 146154.CrossRefGoogle Scholar
Sobhy, A., Guthrie, R.I.L., Butler, I.S. & Kozinski, J.A. 2009 Naphthalene combustion in supercritical water flames. Proc. Combust. Inst. 32 (2), 32313238.CrossRefGoogle Scholar
Song, C., Jin, T., Wang, H., Gao, Z., Luo, K. & Fan, J. 2020 High-fidelity numerical analysis of non-premixed hydrothermal flames: flame structure and stabilization mechanism. Fuel 259, 116162.CrossRefGoogle Scholar
Song, C., Luo, K., Jin, T., Wang, H. & Fan, J. 2019 Direct numerical simulation on auto-ignition characteristics of turbulent supercritical hydrothermal flames. Combust. Flame 200, 354364.CrossRefGoogle Scholar
Sreedhara, S. & Lakshmisha, K.N. 2002 Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proc. Combust. Inst. 29 (2), 20692077.CrossRefGoogle Scholar
Steeper, R.R., Rice, S.F., Brown, M.S. & Johnston, S.C. 1992 Methane and methanol diffusion flames in supercritical water. J. Supercrit. Fluid 5 (4), 262268.CrossRefGoogle Scholar
Veynante, D., Vervisch, L., Poinsot, T., Martínez, A.L. & Ruetsch, G. 1995 Triple flame structure and diffusion flame stabilization. In Studying Turbulence Using Numerical Simulation Databases. V : Proceedings of the 1994 Summer Program. Stanford University.Google Scholar
Viggiano, A. 2010 Exploring the effect of fluid dynamics and kinetic mechanisms on n-heptane autoignition in transient jets. Combust. Flame 157 (2), 328340.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Savard, B. & Chen, J.H. 2018 Direct numerical simulation of a high KA CH4/air stratified premixed jet flame. Combust. Flame 193, 229245.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Zhou, B., Chen, J.H., Li, Z. & Aldn, M. 2017 A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number. Proc. Combust. Inst. 36 (2), 20452053.CrossRefGoogle Scholar
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flame stability at the transition point of jet diffusion flames. Proc. Combust. Inst. 26 (1), 2734.CrossRefGoogle Scholar
Yoo, C.S., Sankaran, R. & Chen, J.H. 2009 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453481.CrossRefGoogle Scholar