Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T17:49:05.411Z Has data issue: false hasContentIssue false

Diffusion of a passive scalar in two-dimensional turbulence

Published online by Cambridge University Press:  21 April 2006

Marcel Lesieur
Affiliation:
Institut de Mécanique, Université de Grenoble et Institut National Polytechnique de Grenoble, B.P. 68, 38402 Saint-Martin d'Heres Cedex. France
Jackson Herring
Affiliation:
Geophysical Turbulence Program, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, U.S.A.

Abstract

We study the spectral statistics of the fluctuations of a passive scalar convected by a two-dimensional homogeneous isotropic turbulence using the eddy-damped quasinormal Markovian (EDQNM) theory, and – in certain cases – the near-equivalent test-field model (TFM). For zero correlation between scalar and vorticity fields it is known that these closures lead to inertial–convective ranges following respectively a k−1 law in the enstrophy-cascade range and a k−5/3 law in the inverse-energy-cascade range. We show that the scalar cascade in the latter range is direct, and is characterized by a positive eddy diffusivity. For forced flows in which correlation between vorticity and scalar forcing is prescribed, the k−5/3 range is replaced by a k1/3 range if the correlation is perfect, and for imperfect correlation we describe an analysis that bridges the ranges k1/3, k−1.

We also examine the infrared (k → 0) behaviour of the energy and scalar spectra. Statistically steady injection of energy and scalar variance at a wavenumber kI produces an energy spectrum E(k) ∼ k3, and a scalar spectrum E0(k) ∼ k. In the unforced case, for any initial conditions, the energy spectrum develops a k3 range for k less than the wavenumber characteristic of the energy-containing eddies and a k−3 range for larger k. This allows a demonstration – via closure – that this energy-bearing wavenumber decreases as t−1 and the enstrophy as t−2 (modulo logarithmic corrections), as predicted by Batchelor (1969). Finally we show the scalar-fluctuation variance decays as the enstrophy, if the enstrophy spectrum is considered as a passive scalar. If not, the decay exponent is proportional to the ratio of the characteristic eddy-damping rates of the velocity and scalar third-order moments.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babiano, A., Basdevant, C., Legras, B. & Sadourny, R. 1984 C.R. Acad. Sci. Paris, A. 299, Serie II, no. 10, 601.
Basdevant, C. 1981 Contribution a l'étude numérique et théorique de la turbulence bidimensiomelle. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris.
Basdevant, C. & Sadourny, R. 1983 In Two-Dimensional Turbulence (J. Méc. Theor. Appl. Numéro Spécial) p. 243.Google Scholar
Basdevant, C., Lesieur, M. & Sadourny, R. 1978 J. Atmos. Sci. 35, 1028.
Batchelor, G. K. 1952 Proc. Camb. Phil. Soc. 48, 345.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K. 1969 Phys. Fluids Suppl. 12, II-233.
Batchelor, G. K., Howells, I. D. & Townsend, A. A. 1959 J. Fluid Mech. 5, 134.
Brachet, M. E. & Sulem, P. L. 1984 Direct numerical simulation of two-dimensional turbulence. In Proc. 4th Beersheva Seminar on MHD-Flows and Turbulence.
Charney, J. G. 1971 J. Atmos. Sci. 28, 1087.
Corrsin, S. 1951 J. Appl. Phys. 22, 469.
Fjortoft, R. 1953 Tellus 5, 225.
Haidvogel, D. B. & Keffer, G. X. 1982 Dyn. Atmos. Oceans 12, 1223.
Herring, J. R. & Mcwilliams, J. C. 1985 J. Fluid Mech. 153, 229.
Herring, J. R., Schertzer, D., Lesieur, M., Newman, G. R., Chollet, J. P. & Larcheveque, M. 1982 J. Fluid Mech. 124, 411.
Holloway, G. 1985 Eddies, waves, circulation and mixing: statistical geofluid mechanics. Ann. Rev. Fluid Mech. (to appear).Google Scholar
Holloway, G. & Kristmannsson, S. S. 1984 J. Fluid Mech. 141, 27.
Hoyer, J. M. & Sadourny, R. 1982 J. Atmos. Sci. 39, 707.
Hopfinger, E., Griffiths, M. & Mory, M. 1983 In Two-Dimensional Turbulence (J. Méc. Theor. Appl. Numéro Spécial), p. 21.Google Scholar
Kraichnan, R. H. 1959 J. Fluid Mech. 5, 497.
Kraichnan, R. H. 1966 Phys. Fluids 9, 1937.
Kraichnan, R. H. 1967 Phys. Fluids 7, 1417.
Kraichnan, R. H. 1971a J. Fluid Mech. 47, 513.
Kraichnan, R. H. 1971b J. Fluid Mech. 67, 155.
Kraichnan, R. H. 1975 J. Fluid Mech. 67, 155.
Kraichnan, R. H. 1976 J. Atmos. Sci. 33, 1521.
Kraichnan, R. H. & Montgomery, D. 1979 Rep. Prog. Phys. 43, 547.
Larcheveque, M. 1983 In Two-Dimensional Turbulence (J. Méc. Theor. Appl. Numéro Spécial), p. 271.Google Scholar
Larcheveque, M. & Lesieur, M. 1981 J. Méc. 20, 113.
Leith, C. E. 1968 Phys. Fluids 11, 671.
Leith, C. E. 1971 J. Atmos. Sci. 28, 145.
Lesieur, M. 1983 In Two-Dimensional Turbulence (J. Méc. Théor. Appl. Numéro Spécial), p. 5.Google Scholar
Lesieur, M. & Schertzer, D. 1978 J. Méc. 17, 609.
Lesieur, M., Sommeria, J. & Holloway, G. 1981 C.R. Acad. Sci. Paris 292B, 272.
Lilly, D. K. 1969 J. Atmos. Sci. 40, 749.
Mirabel, A. P. & Monin, C. A. 1983 Physics of the atmosphere and oceans 19, 902.
O'Brien, E. F. & Francis, G. C. 1962 J. Fluid Mech. 13, 369.
Oboukhov, A. M. 1949 Izv. Akad. Nauk. SSSR Ser. Geogr. i Geofiz. 13, 58.
Pouquet, A., Lesieur, M., Andre, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305.
Rhines, P. 1979 Ann. Rev. Fluid Mech. 11, 40.
Roberts, P. M. 1961 J. Fluid Mech. 11, 257.
Schertzer, D. & Lovejoy, S. 1984 In Fourth Intl Symp. Turbulent Shear Flows, Karlsruhe, Sept. 1983, p. 73. Springer-Verlag.
Sulem, P.-L. & Frisch, U. 1984 Phys. Fluids 27, 1921.
Tatsumi, J. & Yanase, S. 1981 J. Fluid Mech. 110, 475.