Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T03:59:31.410Z Has data issue: false hasContentIssue false

A decoupled mechanism of interface growth in single-mode hydrodynamic instabilities

Published online by Cambridge University Press:  02 June 2023

Changwen Liu
Affiliation:
HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University,Beijing 100871, PR China State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China
Hongzhi Wu-Wang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China
Yousheng Zhang*
Affiliation:
HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University,Beijing 100871, PR China Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China
Zuoli Xiao*
Affiliation:
HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University,Beijing 100871, PR China State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China Nanchang Innovation Institute, Peking University, Nanchang 330008, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

One of the most significant issues in hydrodynamic interfacial instabilities is the growth rate of the interfacial perturbations, which plays an important role in both scientific research (e.g. supernova explosion) and engineering applications (e.g. inertial confinement fusion). Yet the underlying mechanisms of such flow phenomena remain unclear or controversial. In this paper the decoupled mechanisms of two effects are found to dominate the interface growth of the single-mode Rayleigh–Taylor instability (RTI) and Richtmyer–Meshkov instability (RMI) via Layzer's potential-flow model. One is the inertial effect induced by the interfacial density gradient and the acceleration, and the other is the frontal distortion effect stemming from interface shape evolution. The former determines the dominant features of interface evolution, while the latter influences the local concavity and convexity of growth rate such as the overshoot phenomenon. These two effects can be approximated as a linearly decoupled analytical solution if their nonlinear interaction term is neglected. With the decoupled solution, the theoretical growth rates agree well with high-fidelity numerical simulation results. The present result indicates that the long-time evolution of fluid interface in both RTI and RMI at all density ratios can be accurately predicted if both inertia and frontal distortion effects are taken into account. Furthermore, the strong dependence of instability evolution on initial amplitude is quantified based on the effects of decoupling, which sheds light on the physical origin of the overshoot phenomenon.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzhi, S.I., Glimm, J. & Lin, A.-D. 2003 Dynamics of two-dimensional Rayleigh–Taylor bubbles for fluids with a finite density contrast. Phys. Fluids 15 (8), 21902197.CrossRefGoogle Scholar
Allred, J.C., Blount, G.H. & Miller, J.H. III 1953 Experimental Studies of Taylor Instability. Los Alamos Scientific Laboratory Report LA-1600.CrossRefGoogle Scholar
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74, 534537.CrossRefGoogle ScholarPubMed
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445445.CrossRefGoogle Scholar
Burrows, A. 2000 Supernova explosions in the Universe. Nature 403 (6771), 727733.CrossRefGoogle ScholarPubMed
Casey, D.T., et al. 2017 Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys. 13, 12271231.CrossRefGoogle Scholar
Daly, B.J. 1967 Numerical study of two fluid Rayleigh–Taylor instability. Phys. Fluids 10 (2), 297307.CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22 (1), 014104.CrossRefGoogle Scholar
Ding, J.-C., Ting, S., Yang, J.-M., Lu, X.-Y., Zhai, Z.-G. & Luo, X.-S. 2017 Measurement of a Richtmyer–Meshkov instability at an air-$\mathrm {SF}_{6}$ interface in a semiannular shock tube. Phys. Rev. Lett. 119, 014501.CrossRefGoogle Scholar
Goncharov, V. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.CrossRefGoogle ScholarPubMed
Guo, W.X. & Zhang, Q. 2020 Universality and scaling laws among fingers at Rayleigh–Taylor and Richtmyer–Meshkov unstable interfaces in different dimensions. Physica D 403, 132304.CrossRefGoogle Scholar
Hecht, J., Alon, U. & Shvarts, D. 1994 Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts. Phys. Fluids 6 (12), 40194030.CrossRefGoogle Scholar
Isobe, H., Miyagoshi, T., Shibata, K. & Yokoyama, T. 2005 Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478–81.CrossRefGoogle ScholarPubMed
Jacobs, J.W. & Catton, I. 1988 Three-dimensional Rayleigh–Taylor instability. Part 2. Experiment. J. Fluid Mech. 187, 353371.CrossRefGoogle Scholar
Jacobs, J.W. & Sheeley, J.M. 1996 Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8 (2), 405415.CrossRefGoogle Scholar
Krechetnikov, R. 2009 Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J. Fluid Mech. 625, 387410.CrossRefGoogle Scholar
Kull, H.J. 1983 Bubble motion in the nonlinear Rayleigh–Taylor instability. Phys. Rev. Lett. 51, 14341437.CrossRefGoogle Scholar
Kull, H.J. 1986 Nonlinear free-surface Rayleigh–Taylor instability. Phys. Rev. A 33 (3), 19571967.CrossRefGoogle ScholarPubMed
Layzer, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1.CrossRefGoogle Scholar
Lewis, D.J. & Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proc. R. Soc. Lond. A 202 (1068), 8196.Google Scholar
Lherm, V., Deguen, R., Alboussière, T. & Landeau, M. 2022 Rayleigh–Taylor instability in impact cratering experiments. J. Fluid Mech. 937, A20.CrossRefGoogle Scholar
Li, X.-L., Fu, Y.-W., Yu, C.-P. & Li, L. 2021 Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. J. Fluid Mech. 928, A10.CrossRefGoogle Scholar
Liang, Y., Zhai, Z.-G., Ding, J.-C. & Luo, X.-S. 2019 Richtmyer–Meshkov instability on a quasi-single-mode interface. J. Fluid Mech. 872, 729751.CrossRefGoogle Scholar
Liu, L.-L., Liang, Y., Ding, J.-C., Liu, N.-A. & Luo, X.-S. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Liu, C.-W., Zhang, Y.S. & Xiao, Z.-L. 2023 A unified theoretical model for spatiotemporal development of Rayleigh–Taylor and Richtmyer–Meshkov fingers. J. Fluid Mech. 954, A13.CrossRefGoogle Scholar
Luo, X.-S., Wang, X.-S. & Si, T. 2013 The Richtmyer–Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature. J. Fluid Mech. 722, R2.CrossRefGoogle Scholar
Luo, X.-S., Zhang, F., Ding, J.-C., Si, T., Yang, J.-M., Zhai, Z.-G. & Wen, C.-Y. 2018 Long-term effect of Rayleigh–Taylor stabilization on converging Richtmyer–Meshkov instability. J. Fluid Mech. 849, 231244.CrossRefGoogle Scholar
Matsuo, K., Sano, T., Nagatomo, H., Somekawa, T., Law, K.-F., Morita, H., Arikawa, Y. & Fujioka, S. 2021 Enhancement of ablative Rayleigh–Taylor instability growth by thermal conduction suppression in a magnetic field. Phys. Rev. Lett. 127, 165001.CrossRefGoogle Scholar
Matsuoka, C., Nishihara, K. & Fukuda, Y. 2003 Erratum: nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E 68, 029902.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 1998 Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80, 508511.CrossRefGoogle Scholar
Mikaelian, K.O. 2003 Explicit expressions for the evolution of single-mode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at arbitrary Atwood numbers. Phys. Rev. E 67, 026319.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2008 Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys. Rev. E 78, 015303.CrossRefGoogle ScholarPubMed
Niederhaus, C.E. & Jacobs, J.W. 2003 Experimental study of the Richtmyer–Meshkov instability of incompressible fluids. J. Fluid Mech. 485, 243277.CrossRefGoogle Scholar
Ramaprabhu, P. & Dimonte, G. 2005 Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys. Rev. E 71, 036314.CrossRefGoogle ScholarPubMed
Ramaprabhu, P., Dimonte, G. & ANDREWS, M.J. 2005 A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1-14 (1), 170177.Google Scholar
Renoult, M.C., Rosenblatt, C. & Carles, P. 2015 Nodal analysis of nonlinear behavior of the instability at a fluid interface. Phys. Rev. Lett. 114, 114503.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.CrossRefGoogle Scholar
Ristorcelli, J.R. & Clark, T.T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213253.CrossRefGoogle Scholar
Sabet, N., Hassanzadeh, H., De Wit, A. & Abedi, J. 2021 Scalings of Rayleigh–Taylor instability at large viscosity contrasts in porous media. Phys. Rev. Lett. 126, 094501.CrossRefGoogle ScholarPubMed
Sharp, D.H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12 (1–3), 318.CrossRefGoogle Scholar
Sohn, S.-I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67, 026301.CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2004 Vortex model and simulations for Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E 69, 036703.CrossRefGoogle ScholarPubMed
Sohn, S.-I. & Zhang, Q. 2001 Late time behavior of bubbles at unstable interfaces in two dimensions. Phys. Fluids 13 (11), 34933495.CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Tryggvason, G. & Unverdi, S.O. 1990 Computations of three-dimensional Rayieigh–Taylor instability. Phys. Fluids A 2 (5), 656659.CrossRefGoogle Scholar
Waddell, J.T., Niederhaus, C.E. & Jacobs, J.W. 2001 Experimental study of Rayleigh–Taylor instability: low Atwood number liquid systems with single-mode initial perturbations. Phys. Fluids 13 (5), 12631273.CrossRefGoogle Scholar
Wei, T. & Livescu, D. 2012 Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E 86, 046405.CrossRefGoogle ScholarPubMed
Wilkinson, J.P. & Jacobs, J.W. 2007 Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability. Phys. Fluids 19 (12), 124102.CrossRefGoogle Scholar
Yan, Z., Fu, Y.-W., Wang, L.-F., Yu, C.-P. & Li, X.-L. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.CrossRefGoogle Scholar
Yang, J., Kubota, T. & Zukoski, E.E. 1993 Applications of shock-induced mixing to supersonic combustion. AIAA J. 31 (5), 854862.CrossRefGoogle Scholar
Zhang, Q. 1998 Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81, 33913394.CrossRefGoogle Scholar
Zhang, Q., Deng, S.Y. & Guo, W.X. 2018 Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett. 121, 174502.CrossRefGoogle ScholarPubMed
Zhang, Q. & Guo, W.X. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.CrossRefGoogle Scholar
Zhang, Q. & Guo, W.X. 2022 Quantitative theory for spikes and bubbles in the Richtmyer–Meshkov instability at arbitrary density ratios. Phys. Rev. Fluids 7, 093904.CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.-I. 1996 An analytical nonlinear theory of Richtmyer–Meshkov instability. Phys. Lett. A 212 (3), 149155.CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.-I. 1997 Padé approximation to an interfacial fluid mixing problem. Appl. Math. Lett. 10 (5), 121127.CrossRefGoogle Scholar
Zhao, Z.-Y., Wang, P., Liu, N.-S. & Lu, X.-Y. 2020 Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry. J. Fluid Mech. 900, A24.CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723-725, 1160.Google Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.CrossRefGoogle Scholar
Zhou, Y., Cabot, W.H. & Thornber, B. 2016 Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows. Phys. Plasmas 23 (5), 052712.CrossRefGoogle Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Gail Glendinning, S., Aaron Skinner, M., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (8), 080901.CrossRefGoogle Scholar
Zufiria, J.A. 1988 Bubble competition in Rayleigh–Taylor instability. Phys. Fluids 31 (3), 440446.CrossRefGoogle Scholar