Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T00:25:06.090Z Has data issue: false hasContentIssue false

Decomposition of the mean friction drag on an NACA4412 airfoil under uniform blowing/suction

Published online by Cambridge University Press:  07 December 2021

Yitong Fan
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
Marco Atzori
Affiliation:
SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
Ricardo Vinuesa
Affiliation:
SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
Davide Gatti
Affiliation:
Institute of Fluid Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany
Philipp Schlatter
Affiliation:
SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
Weipeng Li*
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
*
Email address for correspondence: [email protected]

Abstract

The application of drag-control strategies on canonical wall-bounded turbulence, such as periodic channel and zero- or adverse-pressure-gradient boundary layers, raises the question on how to distinguish consistently the origin of control effects under different reference conditions. We employ the RD identity (Renard & Deck, J. Fluid Mech., vol. 790, 2016, pp. 339–367) to decompose the mean friction drag and investigate the control effects of uniform blowing and suction applied to an NACA4412 airfoil at chord Reynolds numbers $Re_c=200\,000$ and $400\,000$. The connection of the drag reduction/increase by using blowing/suction with the turbulence statistics (including viscous dissipation, turbulence kinetic energy production and spatial growth of the flow) across the boundary layer, subjected to adverse or favourable pressure gradients, is examined. We found that the inner and outer peaks of the contributions associated with the friction-drag generation show good scaling with either inner or outer units, respectively. They are also independent of the Reynolds number, control scheme and intensity of the blowing/suction. The small- and large-scale structures are separated with an adaptive scale-decomposition method, namely the empirical mode decomposition (EMD), which aims to analyse the scale-specific contribution of turbulent motions to friction-drag generation. Results unveil that blowing on the suction side of the airfoil is able to enhance the contribution of large-scale motions and to suppress that of small scales; however, suction behaves contrarily. The contributions related to cross-scale interactions remain almost unchanged with different control strategies.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, A., de Vicente, J. & Valero, E. 2013 Aerodynamic technologies to improve aircraft performance. Aerosp. Sci. Technol. 28 (1), 100132.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M.A. 2014 On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26 (7), 075107.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M.A. 2016 Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28 (1), 015107.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M.A. 2019 The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at $Re_\tau \approx 1000$. J. Fluid Mech. 871, 2251.CrossRefGoogle Scholar
Alfredsson, P.H., Segalini, A. & Örlü, R. 2011 A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak. Phys. Fluids 23 (4), 041702.CrossRefGoogle Scholar
Ansell, P.J. & Balajewicz, M.J. 2017 Separation of unsteady scales in a mixing layer using empirical mode decomposition. AIAA J. 55 (2), 419434.CrossRefGoogle Scholar
Atzori, M., Vinuesa, R., Fahland, G., Stroh, A., Gatti, D., Frohnapfel, B. & Schlatter, P. 2020 Aerodynamic effects of uniform blowing and suction on a NACA4412 airfoil. Flow Turbul. Combust. 105, 735759.CrossRefGoogle Scholar
Bannier, A., Garnier, É. & Sagaut, P. 2015 Riblet flow model based on an extended FIK identity. Flow Turbul. Combust. 95 (2-3), 351376.CrossRefGoogle Scholar
Bobke, A., Örlü, R. & Schlatter, P. 2016 Simulations of turbulent asymptotic suction boundary layers. J. Turbul. 17 (2), 157180.CrossRefGoogle Scholar
Cheng, C., Li, W.-P., Lozano-Durán, A. & Liu, H. 2019 Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition. J. Fluid Mech. 870, 10371071.CrossRefGoogle ScholarPubMed
Clauser, F.H. 1954 The turbulent boundary layer in adverse pressure gradients. J. Aero. Sci. 21, 91108.CrossRefGoogle Scholar
Clauser, F.H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.CrossRefGoogle Scholar
Corrsin, S. 1958 Local isotropy in turbulent shear flow. NACA Res. Memo. 58B11.Google Scholar
Dogan, E., Örlü, R., Gatti, D., Vinuesa, R. & Schlatter, P. 2019 Quantification of amplitude modulation in wall-bounded turbulence. Fluid Dyn. Res. 51, 011408.CrossRefGoogle Scholar
Dong, S., Lozano-Durán, A.án, Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.CrossRefGoogle Scholar
Eto, K., Kondo, Y., Fukagata, K. & Tokugawa, N. 2019 Assessment of friction drag reduction on a Clark-Y airfoil by uniform blowing. AIAA J. 57 (7), 27742782.CrossRefGoogle Scholar
Fahland, G., Stroh, A., Frohnapfel, B., Atzori, M., Vinuesa, R., Schlatter, P. & Gatti, D. 2021 Investigation of blowing and suction for turbulent flow control on airfoils. AIAA J. 59 (11), 44224436.CrossRefGoogle Scholar
Fan, Y.-T., Cheng, C. & Li, W.-P. 2019 a Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows. Appl. Math. Mech. (English Ed.) 40 (3), 331342.CrossRefGoogle Scholar
Fan, Y.-T., Li, W.-P., Atzori, M., Pozuelo, R., Schlatter, P. & Vinuesa, R. 2020 a Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers. Phys. Rev. Fluids 5, 114608.CrossRefGoogle Scholar
Fan, Y.-T., Li, W.-P. & Pirozzoli, S. 2019 b Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers. Phys. Fluids 31 (8), 086105.Google Scholar
Fan, Y.-T., Li, W.-P. & Pirozzoli, S. 2020 b Energy-based decomposition of friction drag in turbulent square-duct flows. Intl J. Heat Fluid Flow 86, 108731.CrossRefGoogle Scholar
Fischer, P.F., Lottes, J.W. & Kerkemeier, S.G. 2008 Nek5000: Open source spectral element CFD solver. Available at: http://nek5000.mcs.anl.gov.Google Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.CrossRefGoogle Scholar
Gad-el Hak, M. 1994 Interactive control of turbulent boundary layers: a futuristic overview. AIAA J. 32 (9), 17531765.CrossRefGoogle Scholar
Goldschmied, F.R. 1951 Skin friction of incompressible turbulent boundary layers under adverse pressure gradients. NACA Tech. Rep. TN-2431.Google Scholar
Harun, Z., Monty, J.P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.CrossRefGoogle Scholar
Hirokawa, S., Ohashi, M., Eto, K., Fukagata, K. & Tokugawa, N. 2020 Turbulent friction drag reduction on Clark-Y airfoil by passive uniform blowing. AIAA J. 58 (9), 41784180.CrossRefGoogle Scholar
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N. -C., Tung, C.C. & Liu, H.H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903995.CrossRefGoogle Scholar
Huang, Y.X., Schmitt, F.G., Lu, Z.M. & Liu, Y.L. 2008 An amplitude-frequency study of turbulent scaling intermittency using empirical mode decomposition and Hilbert spectral analysis. Europhys. Lett. 84 (4), 40010.CrossRefGoogle Scholar
Hwang, D. 1996 A proof of concept experiment for reducing skin friction by using a micro-blowing technique. NASA Tech. Rep. TM-107315.CrossRefGoogle Scholar
Hwang, D. 2004 Review of research into the concept of the microblowing technique for turbulent skin friction reduction. Prog. Aerosp. Sci. 40, 559575.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kametani, Y. & Fukagata, K. 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154172.CrossRefGoogle Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132142.CrossRefGoogle Scholar
von Kármán, T.H.. 1921 On laminar and turbulent friction. J. Appl. Math. Mech. 1 (4), 233252.Google Scholar
Kim, K., Sung, H.-J. & Chung, M.-K. 2002 Assessment of local blowing and suction in a turbulent boundary layer. AIAA J. 40 (1), 175177.CrossRefGoogle Scholar
Kornilov, V.I. 2015 Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Prog. Aerosp. Sci. 76, 123.CrossRefGoogle Scholar
Kornilov, V.I. 2017 Implementation of air injection into the turbulent boundary layer of aircraft wing using external pressurized flow. Thermophys. Aeromech. 24, 175185.CrossRefGoogle Scholar
Kornilov, V.I. 2021 Combined blowing/suction flow control on low-speed airfoils. Flow Turbul. Combust. 106, 81108.CrossRefGoogle Scholar
Kornilov, V.I., Kavun, I.N. & Popkov, A.N. 2019 Modification of turbulent airfoil section flow using a combined control action. Thermophys. Aeromech. 26, 165178.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.-J. 2008 Effects of an adverse pressure gradient on a turbulent boundary layer. Intl J. Heat Fluid Flow 29 (3), 568578.CrossRefGoogle Scholar
Li, W.-P. 2020 Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface. Aerosp. Sci. Technol. 104, 106003.CrossRefGoogle Scholar
Li, W.-P., Fan, Y.-T., Modesti, D. & Cheng, C. 2019 Decomposition of the mean skin-friction drag in compressible turbulent channel flows. J. Fluid Mech. 875, 101123.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. A.M. Yaglom & V.I. Tartarsky), pp. 166–177. Nauka, Moscow.Google Scholar
Mahfoze, O.A., Moody, A., Wynn, A., Whalley, R.D. & Laizet, S. 2019 Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization framework. Phys. Rev. Fluids 4, 094601.CrossRefGoogle Scholar
Mehdi, F., Johansson, T.G., White, C.M. & Naughton, J.W. 2014 On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp. Fluids 55 (1), 1656.CrossRefGoogle Scholar
Mehdi, F. & White, C.M. 2011 Integral form of the skin friction coefficient suitable for experimental data. Exp. Fluids 50 (1), 4351.CrossRefGoogle Scholar
Modesti, D., Pirozzoli, S., Orlandi, P. & Grasso, F. 2018 On the role of secondary motions in turbulent square duct flow. J. Fluid Mech. 847, R1.CrossRefGoogle Scholar
Park, J. & Choi, H. 1999 Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow. Phys. Fluids 11 (10), 30953105.CrossRefGoogle Scholar
Patera, A.T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.CrossRefGoogle Scholar
Peet, Y. & Sagaut, P. 2009 Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys. Fluids 21 (10), 105105.CrossRefGoogle Scholar
Ran, W., Zare, A. & Jovanović, M.R. 2021 Model-based design of riblets for turbulent drag reduction. J. Fluid Mech. 906, A7.CrossRefGoogle Scholar
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339367.CrossRefGoogle Scholar
Rotta, J.C. 1950 Über die theorie der turbulenten grenzschichten. Mitt. Max Planck Inst. Strömungsforsch., Göttingen.Google Scholar
Sanmiguel Vila, C., Vinuesa, R., Discetti, S., Ianiro, A., Schlatter, P. & Örlü, R. 2020 Separating adverse-pressure-gradient and Reynolds-number effects in turbulent boundary layers. Phys. Rev. Fluids 5, 064609.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.CrossRefGoogle Scholar
Senthil, S., Kitsios, V., Sekimoto, A., Atkinson, C. & Soria, J. 2020 Analysis of the factors contributing to the skin friction coefficient in adverse pressure gradient turbulent boundary layers and their variation with the pressure gradient. Intl J. Heat Fluid Flow 82, 108531.CrossRefGoogle Scholar
Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y. 2015 A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27, 075101.CrossRefGoogle Scholar
Stroh, A., Hasegawa, Y., Schlatter, P. & Frohnapfel, B. 2016 Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805, 303321.CrossRefGoogle Scholar
Tanarro, Á., Vinuesa, R. & Schlatter, P. 2020 Effect of adverse pressure gradients on turbulent wing boundary layers. J. Fluid Mech. 883, A8.CrossRefGoogle Scholar
Touber, E. & Leschziner, M.A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150200.CrossRefGoogle Scholar
Vinuesa, R., Bobke, A., Örlü, R. & Schlatter, P. 2016 On determining characteristic length scales in pressure-gradient turbulent boundary layers. Phys. Fluids 28 (5), 055101.CrossRefGoogle Scholar
Vinuesa, R., Negi, P.S., Atzori, M., Hanifi, A., Henningson, D.S. & Schlatter, P. 2018 Turbulent boundary layers around wing sections up to $Re_c=1\,000\,000$. Intl J. Heat Fluid Flow 72, 8699.CrossRefGoogle Scholar
Vinuesa, R. & Schlatter, P. 2017 Skin-friction control of the flow around a wing section through uniform blowing. In Proceedings of European Drag Reduction and Flow Control Meeting (EDRFCM). Rome, Italy.Google Scholar
Wang, W.-K., Pan, C. & Wang, J.-J. 2018 Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence. Exp. Fluids 59, 1.CrossRefGoogle Scholar
Wang, W.-K., Pan, C. & Wang, J.-J. 2019 Multi-component variational mode decomposition and its application on wall-bounded turbulence. Exp. Fluids 60, 95.CrossRefGoogle Scholar
Wei, T. 2018 Integral properties of turbulent-kinetic-energy production and dissipation in turbulent wall-bounded flows. J. Fluid Mech. 854, 449473.CrossRefGoogle Scholar
Welch, G., Larosiliere, L., Hwang, D. & Wood, J. 2001 Effectiveness of micro-blowing technique in adverse pressure gradients. Aerospace Sciences Meeting and Exhibit. AIAA Paper 2001-1012.CrossRefGoogle Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.CrossRefGoogle Scholar
Wu, Y. & Christensen, K.T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.CrossRefGoogle Scholar
Yoon, M., Ahn, J., Hwang, J. & Sung, H.J. 2016 Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows. Phys. Fluids 28 (8), 081702.CrossRefGoogle Scholar
Yoon, M., Hwang, J. & Sung, H.J. 2018 Contribution of large-scale motions to the skin friction in a moderate adverse pressure gradient turbulent boundary layer. J. Fluid Mech. 848, 288311.CrossRefGoogle Scholar