Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T09:57:11.213Z Has data issue: false hasContentIssue false

A critical analysis of turbulence dissipation in near-wall flows, based on stereo particle image velocimetry and direct numerical simulation data

Published online by Cambridge University Press:  13 October 2022

William K. George
Affiliation:
Centrale Lille, F59651 Villeneuve d'Ascq, France
Michel Stanislas*
Affiliation:
Centrale Lille, F59651 Villeneuve d'Ascq, France
Jean Marc Foucaut
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000 Lille, France
Christophe Cuvier
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000 Lille, France
Jean Philippe Laval
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000 Lille, France
*
Email address for correspondence: [email protected]

Abstract

An experiment was performed using stereo particle image velocimetry (SPIV) in the Laboratoire de Mécanique des Fluides de Lille boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy $\epsilon = 2 \nu \langle {\mathsf{s}}_{ij}{\mathsf{s}}_{ij} \rangle$, where ${\mathsf{s}}_{ij}$ is the fluctuating strain rate and $\langle ~\rangle$ denotes ensemble averages. Also measured were all the moments of the full average deformation rate tensor, as well as all of the first, second and third fluctuating velocity moments except those involving pressure. The Reynolds number was $Re_\theta = 7634$ or $Re_\tau = 2598$. The present paper gives the measured average dissipation, $\epsilon$ and the derivative moments comprising it. The results are compared with the earlier measurements of Balint, Wallace & Vukolavcevic (J. Fluid Mech., vol. 228, 1991, pp. 53–86) and Honkan & Andreopoulos (J. Fluid Mech., vol. 350, 1997, pp. 29–96) at lower Reynolds numbers and to new results from a plane channel flow DNS at comparable Reynolds number. Of special interest is the prediction by George & Castillo (Appl. Mech. Rev., vol. 50, 1997, pp. 689–729) and Wosnik, Castillo & George (J. Fluid Mech., vol. 421, 2000, pp. 115–145) that $\epsilon ^+ \propto {x_2^+}^{-1}$ for streamwise homogeneous flows and a nearly indistinguishable power law, $\epsilon \propto {x_2^+}^{\gamma -1}$, for boundary layers. In spite of the modest Reynolds number, the predictions seem to be correct. Then the statistical character of the velocity derivatives is examined in detail, and a particular problem is identified with the breakdown of local homogeneity inside $x_2^+ = 100$. A more general alternative for partially homogeneous turbulence flows is offered which is consistent with the observations. With the help of DNS, the spatial characteristics of the dissipation very near the wall are also examined in detail.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer layer of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Andreopoulos, Y. & Honkan, A. 2001 An experimental study of the dissipative and vortical motions in a turbulent boundary layer. J. Fluid Mech. 439, 131163.CrossRefGoogle Scholar
Antonia, R.A., Phan-Thien, N. & Chambers, A.J. 1980 Taylor's hypothesis and the probability density of velocity and temporal derivatives in a turbulent flow. J. Fluid Mech. 100, 193208.CrossRefGoogle Scholar
Antonia, R.A., Anselmet, F. & Chambers, A.J. 1986 Assessment of local isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365391.CrossRefGoogle Scholar
Antonia, R.A., Kim, J. & Browne, L.W.B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.CrossRefGoogle Scholar
Balint, J.L., Wallace, J.M. & Vukolavcevic, P. 1991 The velocity and vorticity vector-fields of a turbulent boundary-layer. 2. Statistical properties. J. Fluid Mech. 228, 5386.Google Scholar
Batchelor, G.K. (Ed.) 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Batchelor, G.K. 1954 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 186, 480502.Google Scholar
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.CrossRefGoogle Scholar
Chacin, J.M. & Cantwell, B.J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87115.CrossRefGoogle Scholar
Champagne, F.H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 367–108.CrossRefGoogle Scholar
Chandrasekar, S. 1950 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 242, 557577.Google Scholar
Ewing, D. & George, W.K. 2000 The effect of cross flow on mean-square derivatives measured using hot wires. Exp. Fluids 29, 418428.CrossRefGoogle Scholar
Ewing, D., Hussein, H.J. & George, W.K. 1995 Spatial resolution of parallel hot-wire probes for derivative measurements. Exp. Therm. Fluid Sci. 11, 155173.CrossRefGoogle Scholar
Foucaut, J.M. & Stanislas, M. 2002 Some considerations on the accuracy and frequency response of some derivative filters applied to PIV vector fields. Meas. Sci. Technol. 13, 10581071.CrossRefGoogle Scholar
Foucaut, J.M., George, W., Stanislas, M. & Cuvier, C. 2021 Optimization of a SPIV experiment for derivative moments assessment in a turbulent boundary layert. Exp. Fluids 62, 244.CrossRefGoogle Scholar
Foucaut, J.-M., Coudert, S., Stanislas, M. & Delville, J. 2011 Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer. Exp. Fluids 50 (4, Sp. Iss. SI), 839846.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. & Marusic, I. 2005 a Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E.K., Marusic, I. & Pothos, S. 2005 b Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Exp. Fluids 39, 222231.CrossRefGoogle Scholar
George, W.K. & Castillo, L. 1997 The zero pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50, 689729.CrossRefGoogle Scholar
George, W.K., Hussein, H.J. & Woodward, S.H. 1989 An evaluation of the effect of a fluctuation convection velocity on the validity of Taylor's hypothesis. In Proceedings of the 10th Australasian Fluid Mechanics Conference, Melbourne, p. 11.5, U. Melbourne.Google Scholar
George, W.K. & Hussein, H.J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.CrossRefGoogle Scholar
George, W.K. & Taulbee, D.B. 1992 Designing experiments to test closure hypothesis. J. Expl Therm. Fluid Sci. 3, 249260.CrossRefGoogle Scholar
George, W.K. & Tutkun, M. 2011 The mesolayer and Reynolds number dependencies of boundary layer turbulence. In Progress in Wall Turbulence: Understanding and Modeling. ERCOFTAC Series (ed. I. Marusic, M. Stanislas & J. Jimenez), vol. 14, pp. 183–190. Springer.Google Scholar
Gerolymos, G.A. & Vallet, I. 2016 The dissipation tensor ${\boldsymbol{\epsilon}}_{ij}$ in wall turbulence. J. Fluid Mech. 807, 386418.CrossRefGoogle Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results. J. Fluid Mech. 589, 5781.CrossRefGoogle Scholar
Hambleton, W.T., Hutchins, N. & Marusic, I. 2006 Simultaneous orthogonal plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 5364.CrossRefGoogle Scholar
Herpin, S., Coudert, S., Foucaut, J.-M. & Stanislas, M. 2012 Influence of the Reynolds number on the vortical structures in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 716, 550.CrossRefGoogle Scholar
Honkan, A. & Andreopoulos, Y. 1997 Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 2996.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_\tau =2003$. Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.CrossRefGoogle Scholar
Jakirlić, S. & Hanjalić, K. 2002 A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139166.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Kahler, C.J. & Stanislas, M. 2000 Investigation of wall bounded flows by means of multiple plane stereo PIV. In Proceedings of the 10th International Symposium on Appl. of Laser Tech. to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Kline, S.J. & Portela, L.M. 1997 A View of the Structure of Turbulent Boundary Layers (ed. R. Panton), Computational Mechanics Publications.Google Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.Google Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. 30, 301305.Google Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \simeq 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lin, J., Laval, J.-P., Foucaut, J.-M. & Stanislas, M. 2008 Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. Part 1: streaks. Exp. Fluids 45 (6), 9991013.CrossRefGoogle Scholar
Lumley, J.L. 1995 Interpretation of time spectra measured in high intensity shear flows. Phys. Fluids 8, 1056.CrossRefGoogle Scholar
Manceau, R., Carlson, J.R. & Gatski, T.B. 2002 A rescaled elliptic relaxation approach: neutralizing the effect on the log layer. Phys. Fluids 14 (11), 38683879.CrossRefGoogle Scholar
Panton, R. (Ed.) 1997 Self-sustaining mechanisms of wall turbulence. In Advances in Fluid Mechanics. Computational Mechanics Publications, WIT Press.Google Scholar
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry. Springer.CrossRefGoogle Scholar
Saddoughi, S.G. & Veeravalli, S.V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Scarano, F. 2002 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13 (1), R1R19.CrossRefGoogle Scholar
Sillero, J.A., Jimenez, J. & Moser, R.D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta ^+\approx 2000$. Phys. Fluids 25, 105102.CrossRefGoogle Scholar
Smits, A.J. & Marusic, I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Stanislas, M., Perret, L. & Foucaut, J.M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.CrossRefGoogle Scholar
Taylor, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421478.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Thais, L., Tejada-Martínez, A.E., Gatski, T.B. & Mompean, G. 2011 A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput. Fluid 43, 134142.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proceedings of the Midwest Conference on Fluid Mechanics, Columbus, OH, 2nd edn, pp. 1–18. ASME.Google Scholar
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 82, 169192.CrossRefGoogle Scholar
Wänström, M., George, W.K., Meyer, K.E. & Westergaard, C. 2007 Identifying sources of stereoscopic PIV measurements errors on turbulent round jets. In 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, USA, 30 July–2 August, 2007. ASME.CrossRefGoogle Scholar
Wosnik, M., Castillo, L. & George, W.K. 2000 Theory for turbulent pipe and channel flows. J. Fluid Mech. 421, 115145.CrossRefGoogle Scholar
Wyngaard, J.C. 1968 Measurement of small-scale turbulence with hot wires. J. Sci. Instrum. 1, 11051108.CrossRefGoogle Scholar
Zaripov, D., Li, R. & Dushin, N. 2019 Dissipation rate estimation in the turbulent boundary layer using high-speed planar particle image velocimetry. Exp. Fluids 60, 18.CrossRefGoogle Scholar
Zaripov, D., Li, R. & Saushin, I. 2020 Extreme events of turbulent kinetic energy production and dissipation in turbulent channel flow: particle image velocimetry measurements. J. Turbul. 21( 1), 3951.CrossRefGoogle Scholar
Zhao, F., George, W.K. & van Wachem, B.G.M. 2015 Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27, 083301.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachander, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Supplementary material: PDF

George et al. supplementary material

George et al. supplementary material

Download George et al. supplementary material(PDF)
PDF 795.9 KB