Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T19:01:50.264Z Has data issue: false hasContentIssue false

Coupling between a surface-wave spectrum and an internal wave: modulational interaction

Published online by Cambridge University Press:  20 April 2006

K. B. Dysthe
Affiliation:
Institute of Mathematical and Physical Sciences, University of Tromso, Norway
K. P. Das
Affiliation:
Department of Mathematics, University of Kalyani, India

Abstract

Using a simple three-layer model of the ocean, we study a generation mechanism for the lowest internal-wave mode by nonlinear coupling to modulations of the surface-wave spectrum. We first examine the case of a narrow-band surface-wave spectrum, applying a method developed by Alber (1978) to derive a transport equation for the spectral density. Alber demonstrated that, when the spectral width (in the main wave direction) exceeds some critical value, the spectrum is stable against modulational perturbation (i.e. the Benjamin–Feir-type instability is suppressed). We show, however, that, for a stratified ocean, a modulational instability may persist because of a coupling between a ‘modulational mode’ of the surface-wave spectrum and an internal wave. The growth rate is calculated for a simple model of the angular distribution of the spectrum. It turns out that an important parameter is 〈(∇ξ)2〉/Δθ, the ratio between the averaged square of the wave steepness, and the angular width of the spectrum.

For appreciable growth one must have roughly \[ 2\times 10^{-3}\lesssim kd \langle (\nabla\zeta)^2\rangle / \Delta\theta, \] where k is a characteristic wavenumber for the surface-wave spectrum, and d is the depth of the thermocline (50-100 m). This condition is probably too limiting for the above-mentioned modulational instability to be of any practical interest in the oceans.

We also consider the broad-band case of modulational interaction, and show the connection with incoherent three-wave interactions.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alber, I. E. 1978 Proc. Roy. Soc. A 363, 525.
Ball, F. K. 1964 J. Fluid Mech. 19, 465.
Brekhovskikh, L. M., Goncharov, V. V., Kurtepov, V. M. & Naugol'nykh, K. A. 1972 Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 8, 192.
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.
Davis, R. E. & Acrivos, A. 1967 J. Fluid Mech. 30, 723.
Dysthe, K. B. 1979 Proc. Roy. Soc. A 369, 105.
Ewing, G. 1950 J. Mar. Res. 9, 161.
Gargett, A. E. & Hughes, B. A. 1972 J. Fluid Mech. 52, 179.
Garrett, C. J. R. 1976 J. Mar. Res. 34, 117.
Garrett, C. J. R. & Munk, W. H. 1972 Deep-Sea Res. 19, 823
Hasselmann, K. 1966 Rev. Geophys. Space Res. 4, 1.
Hasselmann, K. 1967 Proc. Roy. Soc. A 299, 77.
Joyce, T. M. 1974 J. Fluid Mech. 63, 801.
Kenyon, K. E. 1968 J. Mar. Res. 26, 208.
Kinsman, B. 1965 Wind Waves. Prentice Hall.
LaFond, E. C. 1962 In The Sea, vol. 1. Wiley-Interscience.
Lewis, J. E., Lake, B. M. & Ko, D. R. S. 1974 J. Fluid Mech. 63, 773.
Longuet-Higgins, M. S. & Phillips, O. M. 1962 J. Fluid Mech. 12, 333.
Longuet-Higgins, M. S. & Stewart, R. W. 1964 Deep-Sea Res. 11, 529.
Martin, S., Simmons, W. F. & Wunsch, C. I. 1972 J. Fluid Mech. 53, 17.
Nesterov, S. V. 1972 Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 8, 252.
Olbers, D. J. & Herterich, K. 1979 J. Fluid Mech. 92, 349.
Perry, R. B. & Schimke, G. R. 1965 J. Geophys. Res. 70, 2319.
Phillips, O. M. 1973 Phys. Atmos. & Oceans 9, 954.
Phillips, O. M. 1977 The Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press.
Thorpe, S. A. 1966 J. Fluid Mech. 24, 737.
Thorpe, S. A. 1975 J. Geophys. Res. 80, 328.
Vedenov, A. A., Gordeev, A. V. & Rudakov, L. I. 1967 Plasma Phys. 9, 719.
Watson, K. M., West, B. J. & Cohen, B. I. 1976 J. Fluid Mech. 77, 185.
Willebrandt, J. 1975 J. Fluid Mech. 70, 113.