Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T20:04:06.594Z Has data issue: false hasContentIssue false

Convection in rectangular cavities with differentially heated end walls

Published online by Cambridge University Press:  20 April 2006

P. G. Simpkins
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
T. D. Dudderar
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974

Abstract

This paper describes an experimental study of free convection in an enclosed rectangular cavity, the end walls of which are maintained at uniform but different temperatures. The experiments are carried out for a variety of Rayleigh numbers, R = αgΔTh4/κνl, and aspect ratios, L = l/h, for fluids with Prandtl number σ ≥ 10. For RO(103) it is shown that the basic structure of the flow field is a single two-dimensional cell for 0·25 ≤ L ≤ 9. When R > O(104) the boundary layers on the vertical walls control the flow field, but the basic overall structure remains unicellular. At greater values of R secondary vortices appear for all L ≥ 0·5. As R increases the intensity and then the number of these vortices increases. Measurements of the end-wall boundary-layer profiles at different values of R and L confirm Gill's boundary-layer analysis. The effects of variations of viscosity with temperature are discussed in the context of the observed boundary-layer profiles.

Core shear profiles and mass flux measurements are also reported. For L = 1 the observed shear profiles are in good agreement with numerical solutions of the Boussinesq equations. However, when L > 1 the observations suggest that the horizontal boundary layers have a significant effect on the core flow field. The stream function is demonstrated to be L-dependent in the boundary-layer regime, where variations due to R are second order. Similarities between the results of the present work and earlier observations by Elder and by Seki, Fukusaka & Inaba for tall slender cavities (L [Lt ] 1) are discussed.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1954 Quart. Appl. Math. 12, 209.
Blythe, P. A. & Simpkins, P. G. 1977 In Physico-Chemical Hydrodynamics (ed. D. B. Spalding), vol. 2, p. 511. Advance Pub. Inc.
Cole, G. S. & Winegard, W. C. 1964 J. Inst. Metals 93, 153.
Cormack, D. E. & Leal, L. G. 1974 Phys. Fluids 17, 1049.
Cormack, D. E., Leal, L. G. & Imberger, J. 1974 J. Fluid Mech. 65, 209.
De Vahl Davis, G. 1968 Int. J. Heat Mass Transfer 11, 1675.
Eckert, E. R. G. & Carlson, W. O. 1961 Int. J. Heat Mass Transfer 2, 106.
Elder, J. W. 1965 J. Fluid Mech. 23, 77.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Gill, A. E. 1974 J. Fluid Mech. 64, 577.
Hadley, G. 1735 Phil. Trans. Roy. Soc. 29, 58.
Hart, J. E. 1972 J. Atmos. Sci. 29, 687.
Hurle, D. T. J. 1966 Phil. Mag. 13, 305.
Hurle, D. T. J., Jakeman, E. & Johnson, C. P. 1974 J. Fluid Mech. 64, 565.
Joseph, D. D. 1976 Stability of Fluid Motions II, p. 3. Springer.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, cha. V, 56. Addison-Wesley.
Müller, A. & Wilhelm, M. 1964 Z. Naturforsch. 19a, 254.
Pamplin, B. R. & Bolt, G. H. 1976 J. Phys. D, Appl. Phys. 9, 145.
Quon, C. 1972 Phys. Fluids 15, 12.
Quon, C. J. 1977 Trans. C, J. Heat Transfer, A.S.M.E. 99, 340.
Roux, B., Grondin, J. C., Bontoux, P. & Gilly, B. 1978 Numerical Heat Transfer 1, 331.
Seki, N., Fukusako, S. & Inaba, H. J. 1978 J. Fluid Mech. 84, 695.
Simpkins, P. G. & Blythe, P. A. 1980 Int. J. Heat Mass Transfer 23, 881.
Singh, K. R. & Cowling, T. G. 1963 Quart. J. Mech. Appl. Math. 16, 17.
Stewart, M. J. & Weinberg, F. 1972 J. Crystal Growth 12, 217.
Utech, H. P. & Flemings, M. C. 1966 J. Crystal Growth 13, 651.
Walker, K. L. & Homsy, G. M. 1978 J. Fluid Mech. 87, 449.