No CrossRef data available.
Article contents
Contact angles for evaporating liquids predicted and compared with existing experiments
Published online by Cambridge University Press: 22 June 2001
Abstract
The stationary meniscus of an evaporating, perfectly wetting system exhibits an apparent contact angle Θ which vanishes with the applied temperature difference ΔT, and is maintained for ΔT > 0 by a small-scale flow driven by evaporation. Existing theory predicts Θ and the heat flow q∗ from the contact region as the solution of a free-boundary problem. Though that theory admits the possibility that Θ and q∗ are determined at the same scale, we show that, in practice, a separation of scales gives the theory an inner and outer structure; Θ is determined within an inner region contributing a negligible fraction of the total evaporation, but q∗ is determined at larger scales by conduction across an outer liquid wedge subtending an angle Θ. The existence of a contact angle can thus be assumed for computing the heat flow; the problems for Θ and q∗ decouple. We analyse the inner problem to derive a formula for Θ as a function of ΔT and material properties; the formula agrees closely with numerical solutions of the existing theory. Though microphysics must be included in the model of the inner region to resolve a singularity in the hydrodynamic equations, Θ is insensitive to microphysical detail because the singularity is weak. Our analysis shows that Θ is determined chiefly by the capillary number Ca = μlVl/σ based on surface tension σ, liquid viscosity μl and a velocity scale Vl set by evaporation kinetics. To illustrate this result of our asymptotic analysis, we show that computed angles lie close to the curve Θ = 2.2Ca1/4; a small scatter of ±15% about that curve is the only hint that Θ depends on microphysics. To test our scaling relation, we use film profiles measured by Kim (1994) to determine experimental values of Θ and Ca; these are the first such values to be published for the evaporating meniscus. Agreement between theory and experiment is adequate; the difference is less than ±40% for 9 of 15 points, while the scatter within experimental values is ±25%.
- Type
- Research Article
- Information
- Copyright
- © 2001 Cambridge University Press