Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T10:58:36.424Z Has data issue: false hasContentIssue false

Constrained sparse Galerkin regression

Published online by Cambridge University Press:  10 January 2018

Jean-Christophe Loiseau*
Affiliation:
Laboratoire DynFluid, Arts et Métiers ParisTech, 75013 Paris, France
Steven L. Brunton
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
*
Email address for correspondence: [email protected]

Abstract

The sparse identification of nonlinear dynamics (SINDy) is a recently proposed data-driven modelling framework that uses sparse regression techniques to identify nonlinear low-order models. With the goal of low-order models of a fluid flow, we combine this approach with dimensionality reduction techniques (e.g. proper orthogonal decomposition) and extend it to enforce physical constraints in the regression, e.g. energy-preserving quadratic nonlinearities. The resulting models, hereafter referred to as Galerkin regression models, incorporate many beneficial aspects of Galerkin projection, but without the need for a high-fidelity solver to project the Navier–Stokes equations. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. Galerkin regression models also readily generalize to include higher-order nonlinear terms that model the effect of truncated modes. The effectiveness of such an approach is demonstrated on two canonical flow configurations: the two-dimensional flow past a circular cylinder and the shear-driven cavity flow. For both cases, the accuracy of the identified models compare favourably against reduced-order models obtained from a standard Galerkin projection procedure. Finally, the entire code base for our constrained sparse Galerkin regression algorithm is freely available online.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. 1974 A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (6), 716723.CrossRefGoogle Scholar
Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6), 068102.CrossRefGoogle Scholar
Andersen, M. S., Dahl, J. & Vandenberghe, L.2013 CVXOPT: a Python package for convex optimization, version 1.1.6.Google Scholar
Bagheri, S. 2013 Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596623.CrossRefGoogle Scholar
Bagheri, S., Brandt, L. & Henningson, D. S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263298.CrossRefGoogle Scholar
Balajewicz, M. J., Dowell, E. H. & Noack, B. R. 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285308.CrossRefGoogle Scholar
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 150.CrossRefGoogle Scholar
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750756.CrossRefGoogle Scholar
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. J. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Billings, S. A. 2013 Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley.CrossRefGoogle Scholar
Bongard, J. & Lipson, H. 2007 Automated reverse engineering of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 104 (24), 99439948.CrossRefGoogle ScholarPubMed
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.CrossRefGoogle Scholar
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016a Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15), 39323937.CrossRefGoogle ScholarPubMed
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016b Sparse identification of nonlinear dynamics with control (SINDYc). IFAC NOLCOS 49 (18), 710715.Google Scholar
Candès, E. J. 2006 Compressive sampling. In Proceedings of the International Congress of Mathematicians, vol. 3, pp. 14331452. European Mathematical Society.Google Scholar
Carini, M., Auteri, F. & Giannetti, F. 2015 Centre-manifold reduction of bifurcating flows. J. Fluid Mech. 767, 109145.CrossRefGoogle Scholar
Carlberg, K., Barone, M. & Antil, H. 2017 Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. J. Comput. Phys. 330, 693734.CrossRefGoogle Scholar
Carlberg, K., Tuminaro, R. & Boggs, P. 2015 Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37 (2), B153B184.CrossRefGoogle Scholar
Chartrand, R. 2011 Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011, 164564.CrossRefGoogle Scholar
Donoho, D. L. 2006 Compressed sensing. IEEE Trans. Inform. Theory 52 (4), 12891306.CrossRefGoogle Scholar
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D. S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.Google Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeir, S. G.2008 NEK5000: a fast and scalable high-order solver for computational fluid dynamics. http://nek5000.mcs.anl.gov.Google Scholar
Glaz, B., Liu, L. & Friedmann, P. P. 2010 Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA J. 48 (10), 24182429.CrossRefGoogle Scholar
Gloerfelt, X. 2008 Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity. Phys. Fluids 20 (11), 115105.CrossRefGoogle Scholar
Golub, G. H. & Van Loan, C. F. 2012 Matrix Computations, vol. 3. JHU Press.Google Scholar
Haken, H. 1983 Springer Series in Synergetics (ed. Cardona, M., Fulde, P. & Queisser, H.-J.), p. 269. Springer.Google Scholar
Holmes, P. J., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Ilak, M. & Rowley, C. W. 2008 Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20, 034103.CrossRefGoogle Scholar
Illingworth, S. J., Morgans, A. S. & Rowley, C. W. 2010 Feedback control of flow resonances using balanced reduced-order models. J. Sound Vib. 330 (8), 15671581.Google Scholar
Johnson, S. G.2014 The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt.Google Scholar
Jones, E., Oliphant, T., Peterson, P. et al. 2001 SciPy: open source scientific tools for Python. http://www.scipy.org/.Google Scholar
Juang, J.-N. & Pappa, R. S. 1985 An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid., Control Dyn. 8 (5), 620627.CrossRefGoogle Scholar
Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G., Osth, J., Krajnovic, S. & Niven, R. K. 2014 Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365414.CrossRefGoogle Scholar
Krizhevsky, A., Sutskever, I. & Hinton, G. E. 2012 Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (ed. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.), pp. 10971105. Curran Associates.Google Scholar
Kukreja, S. L. & Brenner, M. J. 2007 Nonlinear system identification of aeroelastic systems: a structure-detection approach. In Identification and Control, pp. 117145. Springer.CrossRefGoogle Scholar
Kukreja, S. L., Löfberg, J. & Brenner, M. J. 2006 A least absolute shrinkage and selection operator (lasso) for nonlinear system identification. IFAC Proc. 39 (1), 814819.Google Scholar
Kutz, J. N. 2017 Deep learning in fluid dynamics. J. Fluid Mech. 814, 14.CrossRefGoogle Scholar
Kutz, J. N., Brunton, S. L., Brunton, B. W. & Proctor, J. L. 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM.CrossRefGoogle Scholar
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9 (6), 17401747.CrossRefGoogle Scholar
Ling, J., Kurzawski, A. & Templeton, J. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.CrossRefGoogle Scholar
Linscott, R. & Wiklund, T.2014 Parsimonious dynamical systems using the LASSO and the bootstrap. http://uu.diva-portal.org/smash/get/diva2:750443/FULLTEXT01.pdf.Google Scholar
Majda, A. J. & Harlim, J. 2012 Physics constrained nonlinear regression models for time series. Nonlinearity 26 (1), 201.CrossRefGoogle Scholar
Mangan, N. M., Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2 (1), 5263.CrossRefGoogle Scholar
Mangan, N. M., Kutz, J. N., Brunton, S. L. & Proctor, J. L. 2017 Model selection for dynamical systems via sparse regression and information criteria. Proc. R. Soc. Lond. A 473, 20170009.Google ScholarPubMed
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113 (8), 084501.CrossRefGoogle ScholarPubMed
McConaghy, T. 2011 Ffx: Fast, scalable, deterministic symbolic regression technology. In Genetic Programming Theory and Practice IX, pp. 235260. Springer.CrossRefGoogle Scholar
Meliga, P. 2017 Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description. J. Fluid Mech. 826, 503521.Google Scholar
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41 (1–3), 309325.CrossRefGoogle Scholar
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357378.CrossRefGoogle Scholar
Milano, M. & Koumoutsakos, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182 (1), 126.CrossRefGoogle Scholar
Nair, A. G. & Taira, K. 2015 Network-theoretic approach to sparsified discrete vortex dynamics. J. Fluid Mech. 768, 549571.CrossRefGoogle Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Noack, B. R., Morzynski, M. & Tadmor, G. 2011 Reduced-Order Modelling for Flow Control. vol. 528. Springer Science & Business Media.CrossRefGoogle Scholar
Noack, B. R., Stankiewicz, W., Morzynski, M. & Schmid, P. J. 2016 Recursive dynamic mode decomposition of a transient cylinder wake. J. Fluid Mech. 809, 843872.Google Scholar
Rossiter, J. E.1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough.Google Scholar
Rowley, C. W. 2005 Model reduction for fluids using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (3), 9971013.CrossRefGoogle Scholar
Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.CrossRefGoogle Scholar
Rowley, C. W. & Dawson, S. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.Google Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.CrossRefGoogle Scholar
Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2017 Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614.CrossRefGoogle ScholarPubMed
Schaeffer, H. 2017 Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. Lond. A 473, 20160446.Google Scholar
Schlegel, M. & Noack, B. R. 2015 On long-term boundedness of galerkin models. J. Fluid Mech. 765, 325352.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmidt, M. & Lipson, H. 2009 Distilling free-form natural laws from experimental data. Science 324 (5923), 8185.Google Scholar
Schumm, M., Eberhard, B. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.CrossRefGoogle Scholar
Schwarz, G. et al. 1978 Estimating the dimension of a model. Ann. Stat. 6 (2), 461464.CrossRefGoogle Scholar
Semaan, R., Kumar, P., Burnazzi, M., Tissot, G., Cordier, L. & Noack, B. R. 2016 Reduced-order modelling of the flow around a high-lift configuration with unsteady coanda blowing. J. Fluid Mech. 800, 72110.CrossRefGoogle Scholar
Semeraro, O., Lusseyran, F., Pastur, L. & Jordan, P. 2017 Qualitative dynamics of wavepackets in turbulent jets. Phys. Rev. Fluids 2, 094605.CrossRefGoogle Scholar
Sengupta, T. K., Haider, S. I., Parvathi, M. K. & Pallavi, G. 2015 Enstrophy-based proper orthogonal decomposition for reduced-order modeling of flow past a cylinder. Phys. Rev. E 91 (4), 043303.Google Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63 (3), 030801.Google Scholar
Sipp, D. & Schmid, P. J. 2016 Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools. Appl. Mech. Rev. 68 (2), 020801.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Tadmor, G., Lehmann, O., Noack, B. R. & Morzyński, M. 2010 Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22 (3), 034102.CrossRefGoogle Scholar
Tibshirani, R. 1996 Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267288.Google Scholar
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391421.Google Scholar
Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V. & Grebogi, C. 2011 Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101.CrossRefGoogle ScholarPubMed
Wiggins, S. 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2. Springer Science & Business Media.Google Scholar
Willcox, K. & Peraire, J. 2002 Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 23232330.CrossRefGoogle Scholar
Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. 2015 A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25 (6), 13071346.CrossRefGoogle Scholar
Yamouni, S., Sipp, D. & Jacquin, L. 2013 Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717, 134165.CrossRefGoogle Scholar
Yao, C. & Bollt, E. M. 2007 Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems. Phys. D 227 (1), 7899.Google Scholar
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21 (2), 155165.Google Scholar
Zhang, H.-Q., Fey, U., Noack, B. R., König, M. & Eckelmann, H. 1995 On the transition of the cylinder wake. Phys. Fluids 7 (4), 779794.CrossRefGoogle Scholar
Zhang, W., Wang, B., Ye, Z. & Quan, J. 2012 Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA J. 50 (5), 10191028.Google Scholar
Zhang, Z. J. & Duraisamy, K. 2015 Machine learning methods for data-driven turbulence modeling. In 22nd AIAA Computational Fluid Dynamics Conference, p. 2460. American Institute of Aeronautics and Astronautics.Google Scholar