Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T05:00:16.146Z Has data issue: false hasContentIssue false

The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy

Published online by Cambridge University Press:  27 April 2011

A. R. JAMALUDDIN
Affiliation:
School of Engineering Sciences, University of Southampton, Highfield SO17 1BJ, UK
G. J. BALL
Affiliation:
Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR, UK
C. K. TURANGAN
Affiliation:
Institute of High Performance Computing, Singapore 138632
T. G. LEIGHTON*
Affiliation:
Institute of Sound and Vibration Research, University of Southampton, Highfield SO17 1BJ, UK
*
Email address for correspondence: [email protected]

Abstract

Recent clinical trials have shown the efficacy of a passive acoustic device used during shock wave lithotripsy (SWL) treatment. The device uses the far-field acoustic emissions resulting from the interaction of the therapeutic shock waves with the tissue and kidney stone to diagnose the effectiveness of each shock in contributing to stone fragmentation. This paper details simulations that supported the development of that device by extending computational fluid dynamics (CFD) simulations of the flow and near-field pressures associated with shock-induced bubble collapse to allow estimation of those far-field acoustic emissions. This is a required stage in the development of the device, because current computational resources are not sufficient to simulate the far-field emissions to ranges of O(10 cm) using CFD. Similarly, they are insufficient to cover the duration of the entire cavitation event, and here simulate only the first part of the interaction of the bubble with the lithotripter shock wave in order to demonstrate the methods by which the far-field acoustic emissions resulting from the interaction can be estimated. A free-Lagrange method (FLM) is used to simulate the collapse of initially stable air bubbles in water as a result of their interaction with a planar lithotripter shock. To estimate the far-field acoustic emissions from the interaction, this paper developed two numerical codes using the Kirchhoff and Ffowcs William–Hawkings (FW-H) formulations. When coupled to the FLM code, they can be used to estimate the far-field acoustic emissions of cavitation events. The limitation of the technique is that it assumes that no significant nonlinear acoustic propagation occurs outside the control surface. Methods are outlined for ameliorating this problem if, as here, computational resources cannot compute the flow field to sufficient distance, although for the clinical situation discussed, this limitation is tempered by the effect of tissue absorption, which here is incorporated through the standard derating procedure. This approach allowed identification of the sources of, and explanation of trends seen in, the characteristics of the far-field emissions observed in clinic, to an extent that was sufficient for the development of this clinical device.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Romax Technology Limited, Nottingham Science and Technology Park, Nottingham NG7 2PZ, UK

References

REFERENCES

Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G. & Crum, L. A. 2003 Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys. 49 (4), 369388.CrossRefGoogle Scholar
Bailey, M. R., Pishchalnikov, Y. A., Sapozhnikov, O. A., Cleveland, R. O., McAteer, J. A., Miller, N. A., Pishchalnikova, I. V., Connors, B. A., Crum, L. A. & Evan, A. P. 2005 Cavitation detection during shock-wave lithotripsy. Ultrasound Med. Biol. 31 (9), 12451256.CrossRefGoogle ScholarPubMed
Ball, G. J. 1996 A free-Lagrange method for unsteady compressible flow: simulation of a confined cylindrical blast wave. Shock Waves 5, 311325.CrossRefGoogle Scholar
Ball, G. J., Howell, B. P., Leighton, T. G. & Schofield, M. J. 2000 Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation. Shock Waves 10, 265276.CrossRefGoogle Scholar
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Birkin, P. R., Offin, D. G., Joseph, P. F. & Leighton, T. G. 2005 a Cavitation, shock waves and the invasive nature of sonoelectrochemistry. J. Phys. Chem. B 109, 1699717005.CrossRefGoogle ScholarPubMed
Birkin, P. R., Offin, D. G. & Leighton, T. G. 2004 a Electrochemical measurements of the effects of inertial acoustic cavitation by means of a novel dual microelectrode. Electrochem. Commun. 6 (11), 11741179.CrossRefGoogle Scholar
Birkin, P. R., Offin, D. G. & Leighton, T. G. 2004 b The study of surface processes under electrochemical control in the presence of inertial cavitation. Wear 258 (1–4), 623628.CrossRefGoogle Scholar
Birkin, P. R., Offin, D. G. & Leighton, T. G. 2005 b Experimental and theoretical characterisation of sonochemical cells. Part 2. Cell disruptors (ultrasonic horn) and cavity cluster. J. Phys. Chem. 7, 530537.Google ScholarPubMed
Blake, J. R., Hooton, M. C., Robinson, P. B. & Tong, R. P. 1997 Collapsing cavities, toroidal bubbles and jet impact. Phil. Trans. R. Soc. Lond. A 355, 537550.CrossRefGoogle Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries: Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.CrossRefGoogle Scholar
Bouakaz, A., Merks, E., Lance'e, C. & Bom, N. 2004 Noninvasive bladder volume measurements based on nonlinear wave distortion. Ultrasound Med. Biol. 30 (4), 469476.CrossRefGoogle ScholarPubMed
Bourne, N. K. & Field, J. E. 1991 Bubble collapse and the initiation of explosion. Proc. R. Soc. Lond. A 435, 423435.Google Scholar
Bourne, N. K. & Field, J. E. 1999 Shock-induced collapse and luminescence by cavities. Proc. R. Soc. Lond. A 357, 295311.Google Scholar
Bourne, N. K. & Milne, A. M. 2003 The temperature of shock-collapsed cavity. Proc. R. Soc. Lond. A 459, 18511861.CrossRefGoogle Scholar
Brentner, K. S. & Farassat, F. 1998 Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA 36 (8), 13791386.CrossRefGoogle Scholar
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid. Mech. 433, 283314.CrossRefGoogle Scholar
Burley, M. M., Madsen, E. L., Zagzebski, J. A., Banjavic, R. A. & Sum, S. W. 1980 A new ultrasound tissue-equivalent material. Radiology 134, 517520.CrossRefGoogle Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies nonspherical cavitation collapse. J. Fluid. Mech. 616, 6397.CrossRefGoogle Scholar
Calvisi, M. L., Lindau, O., Blake, J. R. & Szeri, A. J. 2007 Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys. Fluids 19, 047101.CrossRefGoogle Scholar
Chaudhri, M. M. & Field, J. E. 1974 The role of rapidly compressed gas pockets in the initiation of condensed explosives. Proc. R. Soc. Lond. A 340, 113128.Google Scholar
Church, C. C. 1989 A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust. Soc. Am. 86, 215227.CrossRefGoogle ScholarPubMed
Cleveland, R. O. & Sapozhnikov, O. A. 2005 Modelling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J. Acoust. Soc. Am. 118 (4), 26672676.CrossRefGoogle ScholarPubMed
Cleveland, R. O., Sapozhnikov, O. A., Bailey, M. R. & Crum, L. A. 2000 A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. J. Acoust. Soc. Am. 107, 17451758.CrossRefGoogle ScholarPubMed
Coleman, A. J., Choi, M. J., Saunders, J. E. & Leighton, T. G. 1992 Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med. Biol. 18, 267281.CrossRefGoogle ScholarPubMed
Coleman, A. J. & Saunders, J. E. 1989 A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med. Biol. 15, 213227.CrossRefGoogle ScholarPubMed
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shock-wave lithotripter. Ultrasound Med. Biol. 13, 6976.CrossRefGoogle Scholar
Coleman, A. J., Whitlock, M., Leighton, T. G. & Saunders, J. E. 1993 The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter. Phys. Med. Biol. 38, 15451560.CrossRefGoogle ScholarPubMed
Coley, G. D. & Field, J. E. 1973 The role of cavities in the initiation and growth of explosion in liquids. Proc. R. Soc. Lond. A 335, 6786.Google Scholar
Cooter, R. D., Babidge, W. J., Mutimer, K., Wickham, P., Robinson, D., Kiroff, G., Chapman, A. & Madden, G. J. 2001 Ultrasound-assisted lipoplasty. Austral. NZ J. Surg. 71 (5), 309317.CrossRefGoogle ScholarPubMed
Coussios, C. C. & Roy, R. A. 2008 Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.CrossRefGoogle Scholar
Cui, J. Y., Hamilton, M. F., Wilson, P. S. & Zabolotskaya, E. A. 2006 Bubble pulsations between parallel plates. J. Accoust. Soc. Am. 119 (4), 20672072.CrossRefGoogle ScholarPubMed
Cunningham, K. B., Coleman, A. J., Leighton, T. G. & White, P. R. 2001 Characterisin in vivo acoustic cavitation during lithotripsy with time-frequency methods. Acoust. Bull. 26 (5), 1016.Google Scholar
Damianou, C. A., Sanghvi, N. T. & Fry, F. J. 1997 Dependence of ultrasonic attenuation and absorption in dog soft tissue on temperature and thermal dose. J. Acoust. Soc. Am. 102 (1), 628634.CrossRefGoogle ScholarPubMed
Dear, J. P. & Field, J. E. 1988 High-speed photography of surface geometry effects in liquid/solid impact. J. Appl. Phys. 63, 10151021.CrossRefGoogle Scholar
Dear, J. P., Field, J. E. & Walton, A. J. 1988 Gas compression and jet formation in cavities collapsed by a shock wave. Nature 332, 505508.CrossRefGoogle Scholar
Delius, M. 2000 History of shock wave lithotripsy. In Proceedings of the 15th International Symposium on Nonlinear Acoustics at the Turn of the Millenium, vol. 524, pp. 23–32.Google Scholar
Delius, M. & Gambihler, S. 1992 Sonographic imaging of extracorporeal shock wave effects in the liver and gallbladder of dogs. Digestion 52, 5560.CrossRefGoogle ScholarPubMed
DH 2004 In The NHS Improvement Plan: Putting People at the Heart of Public Services, p. 80. UK Dept. of Health Publication Cm 6268, 24 June 2004, Stationary Office, London.Google Scholar
Ding, Z. & Gracewski, S. M. 1996 The behaviour of a gas cavity impacted by a weak or strong shock wave. J. Fluid Mech. 309, 183209.CrossRefGoogle Scholar
Duck, F. 2010 Tissue nonlinearity. Proc. Inst. Mech. Engrs, Part H: J. Engng. in Med. 224 (2), 155170.CrossRefGoogle Scholar
Eisenmenger, W. 2001 The mechanisms of stone fragmentation in ESWL. Ultrasound Med. Biol. 27 (5), 683693.CrossRefGoogle ScholarPubMed
Farassat, F. & Myers, M. K. 1988 Extension of Kirchhoff's formula to radiation from moving surfaces. J. Sound Vib. 123 (3), 451461.CrossRefGoogle Scholar
Farassat, F. & Succi, G. P. 1983 The prediction of helicopter descrete frequency noise. Vertica 7 (4), 309320.Google Scholar
Fedele, F. 2008 Acoustic sensing of renal stones fragmentation in extracorporeal shockwave lithotripsy. PhD thesis, University of Southampton, UK.Google Scholar
Fedele, F., Coleman, A. J., White, P. R. & Hurrell, A. M. 2004 Development of a new diagnostic sensor for extra-corporeal shock-wave lithotripsy. Proceedings of the First Conference on Advanced Metrology for Ultrasound in Medicine. J. Phys.: Conf. Ser., 134–139.Google Scholar
Fedele, F., Thomas, K., Leighton, T. G., Ryves, S., Phillips, D. & Coleman, A. J. 2010 A passive acoustic monitor of treatment effectiveness during extracorporeal lithotripsy. Proceedings of the Second Conference on Advanced Metrology for Ultrasound in Medicine. J. Phys.: Conf. Ser. 279, 16.Google Scholar
Field, J. E. 1994 Experimental studies of bubble collapse. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R.), pp. 1731. Kluwer Academic.CrossRefGoogle Scholar
Field, J. E., Swallowe, G. M. & Heavens, S. N. 1982 Ignition mechanisms of explosives during mechanical deformation. Proc. R. Soc. Lond. A 383, 231244.Google Scholar
Fong, S. W., Klaseboer, E., Turangan, C. K., Khoo, B. C. & Hung, K. C. 2006 Numerical analysis of a gas bubble near bio-materials in an ultrasound field. Ultrasound Med. Biol. 32, 925942.CrossRefGoogle Scholar
di Francescantonio, P. 1997 A new boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202 (4), 491509.CrossRefGoogle Scholar
Freund, J. B. 2008 Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy. J. Acoust. Soc. Am. 123 (5), 28672874.CrossRefGoogle ScholarPubMed
Gao, F. R., Hu, Y. T. & Hu, H. P. 2007 Asymmetrical oscillation of a bubble confined inside a micro pseudoelastic blood vessel and the corresponding vessel wall stresses. Intl J. Solid Struct. 44 (22–23), 71977212.CrossRefGoogle Scholar
Gol'dberg, 1956 Second approximation acoustic equations and the propagation of plane waves of finite amplitude. Sov. Phys. Acoust. 2, 346350.Google Scholar
Goss, S. A., Johnston, R. L. & Dunn, F. 1980 Compilation of empirical ultrasound properties of mammalian tissues. Part II. J. Acoust. Soc. Am. 68 (1), 93108.CrossRefGoogle Scholar
Hamilton, M. F. & Blackstock, D. T. 1998 In Nonlinear Acoustics, Theory and Applications, p. 102. Academic Press.Google Scholar
Haran, M. E. & Cook, B. D. 1983 Distortion of finite amplitude ultrasound in lossy media. J. Acoust. Soc. Am. 73, 774779.CrossRefGoogle Scholar
Hirsimaki, H. M., Birkin, P. R., Frey, J. G. & Leighton, T. G. 2006 The laser-induced formation of plasma bubbles in water–electrochemical measurements. Proc. Inst. Acoust. 28 (1), 876884.Google Scholar
Howell, B. P. & Ball, G. J. 2000 Damping of mesh-induced errors in free-Lagrange simulations of Richtmyer–Meshkov instability. Shock Waves 10, 253264.CrossRefGoogle Scholar
Howell, B. P. & Ball, G. J. 2002 A free-Lagrange augmented Godunov method for the simulation of elastic–plastic solids. J. Comput. Phys. 175, 128167.CrossRefGoogle Scholar
Iloreta, J. I., Fung, N. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 1. Consequences of interference between incident and reflected waves. J. Fluid Mech. 616, 4361.CrossRefGoogle Scholar
Jamaluddin, A. R. 2005 Free-Lagrange simulations of shock–bubble interaction in extracorporeal shock wave lithotripsy. PhD thesis, University of Southampton, U.K.Google Scholar
Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2002 Free-Lagrange simulations of shock/bubble interaction in shock wave lithotripsy. In Proceedings of the Second International Conference on Computational Fluid Dynamics (ICCFD), Sydney, Australia, pp. 541546.Google Scholar
Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2004 Free-Lagrange simulations of shock/bubble interaction in shock wave lithotripsy. In Proceedings of the 24th International Symposium on Shock Waves, Beijing, China, pp. 12111216.Google Scholar
Jarvinen, T. A., Jarvinen, T. L., Kaariainen, M., Kalimo, H. & Jarvinen, M. 2005 Muscle injuries: Biology and treatment. Am. J. Sports Med. 33 (5), 745764.CrossRefGoogle ScholarPubMed
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Kendrinskii, V. K. 1997 The role of cavitation effects in the mechanisms of destruction and explosive process. Shock Waves 7, 6376.CrossRefGoogle Scholar
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.CrossRefGoogle ScholarPubMed
Klaseboer, E., Turangan, C. K., Fong, S. W., Liu, T. G., Hung, K. C. & Khoo, B. C. 2006 Simulations of pressure–pulse bubble interaction using boundary element method. Comput. Meth. Appl. Engng 195, 42874302.CrossRefGoogle Scholar
Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15, 495506.CrossRefGoogle Scholar
Kuwahara, M., Ioritani, N., Kambe, K., Shirai, S., Taguchi, K., Saitoh, T., Orikasa, S., Takayama, K., Aida, S. & Iwama, N 1989 Hyperechoic region induced by focused shock waves in vitro and in vivo: Possibility of acoustic cavitation bubbles. J. Lithotripsy Stone Dis. 1, 282288.Google Scholar
Lauterborn, W. 1972 High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 21, 27.CrossRefGoogle Scholar
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73 (10), 106501.CrossRefGoogle Scholar
Lea, S. C., Price, G. J. & Walmsley, A. D. 2005 A study to determine whether cavitation occurs around dental ultrasonic scaling instruments. Ultrason. Chem. 12 (3), 233236.Google ScholarPubMed
Leighton, T. G. 1994 In The Acoustic Bubble. The Academic Press.Google Scholar
Leighton, T. G. 2004 From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas bubbles in liquids. Intl J. Mod. Phys. B 18, 32673314.CrossRefGoogle Scholar
Leighton, T. G. 2007 What is ultrasound? Prog. Biophys. Mol. Biol. 93 (1–3), 383.CrossRefGoogle ScholarPubMed
Leighton, T. G., Birkin, P. R., Hodnett, M., Zeqiri, B., Power, J. F., Price, G. J., Mason, T., Plattes, M., Dezkunov, N. & Coleman, A. J. 2005 Charaterisation of measures of reference acoustic cavitation (comorac): An experimental feasibility trial. In Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications (ed. Doinikov, A. A.), pp. 3794. Research Signpost.Google Scholar
Leighton, T. G. & Cleveland, R. O. 2010 Lithotripsy. In Proceedings of the Institute of Mechanical. Engrs, Part H. J. Engng. Med. 224 (2), 317342.Google ScholarPubMed
Leighton, T. G., Cox, B. T. & Phelps, A. D. 2000 The Rayleigh-like collapse of a conical bubble. J. Acoust. Soc. Am. 107 (1), 130142.CrossRefGoogle ScholarPubMed
Leighton, T. G., Farhat, M., Field, J. E. & Avellan, F. 2003 Cavitation luminescence from flow over a hydrofoil in a cavitation tunnel. J. Fluid Mech. 480, 4360.CrossRefGoogle Scholar
Leighton, T. G., Fedele, F., Coleman, A. J., McCarthy, C., Jamaluddin, A. R., Turangan, C. K., Ball, G. J., Ryves, S., Hurrell, A. M., Stefano, A. De & White, P. R. 2008 a The development of a passive acoustic device for monitoring the effectiveness of shock wave lithotripsy in real time. Hydroacoustics 11, 159180.Google Scholar
Leighton, T. G., Fedele, F., Coleman, A. J., McCarthy, C., Ryves, S., Hurrell, A. M., Stefano, A. De & White, P. R. 2008 b Clinical studies of a real-time monitoring of lithotripter performance using passive acoustic sensors. In Proceedings of the Second International Urolithiasis Research Symposium, Indianapolis, USA, pp. 256–277.Google Scholar
Leighton, T. G., Fedele, F., Coleman, A. J., McCarthy, C., Ryves, S., Hurrell, A. M., Stefano, A. De & White, P. R. 2008 c A passive acoustic device for real-time monitoring the efficacy of shockwave lithotripsy treatment. Ultrasound Med. Biol. 34 (10), 16511665.CrossRefGoogle ScholarPubMed
Leighton, T. G., Ho, W. L. & Flaxman, R. 1997 Sonoluminescence from the unstable collapse of a conical bubble. Ultrasonics 35, 399405.CrossRefGoogle Scholar
Leighton, T. G., Phelps, A. D., Cox, B. T. & Ho, W. L. 1998 Theory and preliminary measurements of the Rayleigh-like collapse of a conical bubble. Acustica with Acta Acustica 84 (6), 10141024.Google Scholar
Leighton, T. G., White, P. R. & Marsden, M. A. 1995 a Applications of one-dimensional bubbles to lithotripsy, and to diver response to low frequency sound. Acta Acustica 3, 517529.Google Scholar
Leighton, T. G., White, P. R. & Marsden, M. A. 1995 b The one-dimensional bubble: An unusual oscillator, with applications to human bioeffects of underwater sound. Eur. J. Phys. 16, 275281.CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Lingeman, J. E., McAteer, J. A., Gnessin, E. & Evan, P. 2009 Shock wave lithotripsy: advances in technology and technique. Nat. Rev. Urol. 6, 660670.CrossRefGoogle ScholarPubMed
Liu, X., Li, J., Gong, X. & Zhang, D. 2006 Nonlinear absorption in biological tissue for high intensity focused ultrasound. Ultrasonics 44, e27e30.CrossRefGoogle ScholarPubMed
Lyrintzis, A. S. & George, A. R. 1989 Use of the Kirchhoff method in acoustics. AIAA J. 27 (10), 14511453.CrossRefGoogle Scholar
Lyrintzis, A. S. & Xue, Y. 1991 Study of the noise mechanisms of transonic blade–vortex interactions. AIAA J. 29 (10), 15621572.CrossRefGoogle Scholar
van der Meulen, J. H. J. 1986 a On correlating erosion and luminescence from cavitation on a dydrofoil. In Proceedings of the International Symposium on Propellers and Cavitation, pp. 13–19.Google Scholar
van der Meulen, J. H. J. 1986 b The relation between noise and luminescence from cavitation on a hydrofoil. In Joint ACSE/ASME Conference on Cavitation in Hydraulic Structures and Turbomachinery (ed. Arndt, R. E. A. & Web, D. R.), pp. 149–159.Google Scholar
O'Brien, W., Yang, Y. & Simpson, D. 2004 Evaluation of unscanned-mode soft-tissue thermal index for rectangular sources and proposed new indices. Ultrasound Med. Biol. 30 (7), 965972.CrossRefGoogle ScholarPubMed
Ohl, C. D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 269294.CrossRefGoogle Scholar
O'Leary, R., Sved, A. M., Davies, E. H., Leighton, T. G., Wilson, T. G. & Kieser, J. B. 1997 The bacterial effects of dental ultrasound on Actinobacillus Actiomycetemcomitans and Porphyromonas Gingivalis – an in vitro investigation. J. Clin. Periodontol. 24, 432439.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Sankin, G. N., Simmons, W. N., Zhu, S. L. & Zhong, P. 2005 Shockwave interaction with laser generated single bubbles. Phys. Rev. Lett. 95, 034501.CrossRefGoogle Scholar
Sapozhnikov, O. A., Maxwell, A. D., MacConaghy, B. & Bailey, M. R. 2007 A mechanistic analysis of stone fracture in lithotripsy. J. Acoust. Soc. Am. 121, 11901202.CrossRefGoogle ScholarPubMed
Sassaroli, E. & Hynynen, K. 2007 Cavitation threshold of microbubbles in gel tunnels by focused ultrasound. Ultrasound Med. Biol. 33 (10), 16511660.CrossRefGoogle ScholarPubMed
Shima, A. 1997 Studies of bubble dynamics. Shock Waves 7, 3342.CrossRefGoogle Scholar
Smith, N. C., Fedele, F., Leighton, T. G., Coleman, A. J. & Thomas, K. 2009 The ‘Smart Stethoscope’: Predicting the outcome of lithotripsy Abstract. BJU Intl (formerly: Br. J. Urol.) 103 (4), pp. 32.Google Scholar
Takayama, K. 1999 Application of shock wave research to medicine. In Proceedings of the 22nd International Symposium on Shock Waves, London, UK, pp. 2332.Google Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.CrossRefGoogle Scholar
Turangan, C. K. 2004 Free-Lagrange simulations of cavitation bubble collapse. PhD thesis, University of Southampton, U.K.Google Scholar
Turangan, C. K., Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2008 Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 125.CrossRefGoogle Scholar
Turangan, C. K., Ong, G. P., Klaseboer, E. & Khoo, B. C. 2006 Experimental and numerical study of transient bubble–elastic membrane interaction. J. Appl. Phys. 100, 054910.CrossRefGoogle Scholar
Vian, C. J. B., Birkin, P. R. & Leighton, T. G. 2010 Cluster collapse in a cylindrical cell: Correlating multibubble sonoluminescence, acoustic pressure and erosion. J. Phys. Chem. C 114 (39), 1641616425.CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Whittingham, T. 2007 Wfumb safety symposium on echo-contrast agents: Exposure from diagnostic ultrasound equipment relating to cavitation risk. Ultrasound Med. Biol. 33 (2), 214223.CrossRefGoogle ScholarPubMed
Zderic, V., Keshavarzi, A., Andrew, M. A., Vaezy, S. & Martini, R. W. 2004 Attenuation of porcine tissue in vivo after high intensity ultrasound treatment. Ultrasound Med. Biol. 30 (1), 6166.CrossRefGoogle ScholarPubMed
Zequiri, B., Hodnett, M. & Leighton, T. G. 1997 A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasound fields – final project report. Tech. Rep., NPL Rep. CIRA(EXT)016.Google Scholar
Zhong, P., Cioanta, I., Cocks, F. H. & Preminger, G. M. 1997 Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J. Acoust. Soc. Am. 101 (5 Pt 1), 29402950.CrossRefGoogle ScholarPubMed
Zhong, P., Zhou, Y. & Zhu, S. 2001 Dynamics of bubble oscillations in constrained media and mechanisms of vessel rupture in swl. Ultrasound Med. Biol. 27, 119134.CrossRefGoogle ScholarPubMed
Zhu, S. L., Cocks, F. H., Preminger, G. M. & Zhong, P. 2002 The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med. Biol. 27, 661671.CrossRefGoogle Scholar