Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T15:02:15.978Z Has data issue: false hasContentIssue false

Channelization of plumes beneath ice shelves

Published online by Cambridge University Press:  11 November 2015

M. C. Dallaston
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
I. J. Hewitt
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
A. J. Wells
Affiliation:
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK

Abstract

We study a simplified model of ice–ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bindschadler, R., Vaughan, D.G. & Vornberger, P. 2011 Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. J. Glaciol. 57 (204), 581595.Google Scholar
Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I. & Fleming, A. H. 2013 Pine Island Glacier ice shelf melt distributed at kilometre scales. Cryosphere 7 (5), 15431555.Google Scholar
Ellison, T. H. & Turner, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423448.CrossRefGoogle Scholar
Gladish, C. V., Holland, D. M., Holland, P. R. & Price, S. F. 2012 Ice-shelf basal channels in a coupled ice/ocean model. J. Glaciol. 58 (212), 12271244.Google Scholar
Holland, P. R., Feltham, D. L. & Jenkins, A. 2007 Ice Shelf Water plume flow beneath Filchner–Ronne Ice Shelf, Antarctica. J. Geophys. Res. 112, C05044.Google Scholar
Holmes, M. H. 1995 Introduction to Perturbation Methods. Springer.Google Scholar
Jenkins, A. 1991 A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res. 96, 2067120677.Google Scholar
Jenkins, A. 2011 Convection driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 22792294.Google Scholar
Jenkins, A., Nicholls, K. W. & Corr, H. F. J. 2010 Observation and parameterization of ablation at the base of Ronne Ice Shelf. J. Phys. Oceanogr. 40, 22982312.Google Scholar
LeBrocq, A. M., Ross, N., Griggs, J. A., Bingham, R. G., Corr, H. F. J., Ferraccioli, F., Jenkins, A., Jordan, T. A., Payne, A. J., Rippin, D. M. & Siegert, M. J. 2013 Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nature Geoscience 6, 945948.Google Scholar
MacAyeal, D. R. 1985 Evolution of tidally triggered meltwater plumes below ice shelves. In Oceanology of the Antarctic Continental Shelf (ed. Jacobs, S. S.), pp. 133143. American Geophysical Union.Google Scholar
MacAyeal, D. R. 1989 Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res. 94, 40714087.Google Scholar
Mankoff, K. D., Jacobs, S. S., Tulaczyk, S. M. & Stammerjohn, S. E. 2012 The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica. Ann. Glaciol. 53 (160), 123128.Google Scholar
McPhee, M. G., Morison, J. H. & Nilsen, F. 2008 Revisiting heat and salt exchange at the ice–ocean interface: ocean flux and modeling considerations. J. Geophys. Res. 113, C06014.Google Scholar
Millgate, T., Holland, P. R., Jenkins, A. & Johnson, H. L. 2013 The effect of basal channels on oceanic ice-shelf melting. J. Geophys. Res. 118, 69516964.Google Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. 234, 123.Google Scholar
Motyka, R. J. L., Hunter, K. A., Echelmeyer, K. A. & Connor, C. 2003 Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol. 5765.Google Scholar
Payne, A. J., Holland, P. R., Shepherd, A. P., Rutt, I. C., Jenkins, A. & Joughin, I. 2007 Numerical modeling of ocean–ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res. 112, C10019.Google Scholar
Rignot, E. & Steffen, K. 2008 Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett. 35, L02503.Google Scholar
Schoof, C. & Hewitt, I. 2013 Ice-sheet dynamics. Annu. Rev. Fluid Mech. 45, 217239.Google Scholar
Sciascia, R., Straneo, F., Cenedese, C. & Heimbach, P. 2013 Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. 118, 115.CrossRefGoogle Scholar
Sergienko, O. 2013 Basal channels on ice shelves. J. Geophys. Res. 118, 13421355.CrossRefGoogle Scholar
Smith, T. R. & Bretherton, F. P. 1972 Stability and the conservation of mass in drainage basin evolution. Water Resour. Res. 8, 15061529.Google Scholar
Stoker, J. J. 1957 Water Waves: The Mathematical Theory with Applications. Interscience.Google Scholar
Trefethen, L. N. 2000 Spectral methods in MATLAB. SIAM.CrossRefGoogle Scholar
Vaughan, D. G., Corr, H. F. J., Bindschadler, B. A., Dutrieux, P., Gudmundsson, G. H., Jenkins, A., Newman, T., Vomberger, P. & Wingham, D. J. 2012 Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. J. Geophys. Res. 117, F03012.Google Scholar
Wells, A. J. & Worster, M. G. 2011 Melting and dissolving of a vertical solid surface with laminar compositional convection. J. Fluid Mech. 687, 118140.Google Scholar