Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T03:08:13.662Z Has data issue: false hasContentIssue false

Burnett-order constitutive relations, second moment anisotropy and co-existing states in sheared dense gas–solid suspensions

Published online by Cambridge University Press:  21 January 2020

Saikat Saha
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore560064, India
Meheboob Alam*
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore560064, India
*
Email address for correspondence: [email protected]

Abstract

The Burnett- and super-Burnett-order constitutive relations are derived for homogeneously sheared gas–solid suspensions by considering the co-existence of ignited and quenched states and the anisotropy of the second moment of velocity fluctuations ($\unicode[STIX]{x1D648}=\langle \boldsymbol{C}\boldsymbol{C}\rangle ,C$ is the fluctuation or peculiar velocity) – this analytical work extends our previous works on dilute (Saha & Alam, J. Fluid Mech., vol. 833, 2017, pp. 206–246) and dense (Alam et al., J. Fluid Mech., vol. 870, 2019, pp. 1175–1193) gas–solid suspensions. For the combined ignited–quenched theory at finite densities, the second-moment balance equation, truncated at the Burnett order, is solved analytically, yielding expressions for four invariants of $\unicode[STIX]{x1D648}$ as functions of the particle volume fraction ($\unicode[STIX]{x1D708}$), the restitution coefficient ($e$) and the Stokes number ($St$). The phase boundaries, demarcating the regions of (i) ignited, (ii) quenched and (iii) co-existing ignited–quenched states, are identified via an ordering analysis, and it is shown that the incorporation of excluded-volume effects significantly improves the predictions of critical parameters for the ‘quenched-to-ignited’ transition. The Burnett-order expressions for the particle-phase shear viscosity, pressure and two normal-stress differences are provided, with their Stokes-number dependence being implicit via the anisotropy parameters. The roles of ($St,\unicode[STIX]{x1D708},e$) on the granular temperature, the second-moment anisotropy and the nonlinear transport coefficients are analysed using the present theory, yielding quantitative agreements with particle-level simulations over a wide range of ($St,\unicode[STIX]{x1D708}$) including the bistable regime that occurs at $St\sim O(5)$. For highly dissipative particles ($e\ll 1$) that become increasingly important at large Stokes numbers, it is shown that the Burnett-order solution is not adequate and further higher-order solutions are required for a quantitative agreement of transport coefficients over the whole range of control parameters. The latter is accomplished by developing an approximate super-super-Burnett-order theory for the ignited state ($St\gg 1$) of sheared dense gas–solid suspensions in the second part of this paper. An extremum principle based on viscous dissipation and dynamic friction is discussed to identify ignited–quenched transition.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M. & Saha, S. 2017 Normal stress differences and beyond-Navier–Stokes hydrodynamics. EPJ Conf. Proc. 140, 11014.Google Scholar
Alam, M., Saha, S. & Gupta, R. 2019 Unified theory for a sheared gas–solid suspension: from rapid-granular suspension to its small Stokes-number limit. J. Fluid Mech. 870, 11751193.CrossRefGoogle Scholar
Araki, S. & Tremaine, S. 1986 The dynamics of dense particle disks. Icarus 65, 83109.CrossRefGoogle Scholar
Batchelor, G. K. 1970 The stress in a suspension of force-free particles. J. Fluid Mech. 41, 545577.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order c 2. J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
Birkhoff, G. 1954 Classification of partial differential equations. J. Soc. Indust. Appl. Math. 2, 5767.CrossRefGoogle Scholar
Callen, H. B. 1985 Thermodynamics and an Introduction to Thermostatics. Wiley.Google Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory for Non-uniform Gases. Cambridge University Press.Google Scholar
Chou, C. S. & Richman, M. W. 1998 Constitutive theory for homogeneous granular shear flows of highly inelastic spheres. Physica A 259, 430448.CrossRefGoogle Scholar
Garzo, V., Tenneti, S., Subramaniam, S. & Hrenya, C. 2012 Enskog kinetic theory for monodisperse gas–solid flows. J. Fluid Mech. 712, 129168.CrossRefGoogle Scholar
Giusteri, G. G. & Seto, R. 2018 A theoretical framework for steady-state rheometry in generic flow conditions. J. Rheol. 62, 713723.CrossRefGoogle Scholar
Goddard, J. D. & Alam, M. 1999 Shear-flow and material instabilities in particulate suspensions and granular media. Part. Sci. Technol. 17, 6996.CrossRefGoogle Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.CrossRefGoogle Scholar
Goldreich, P. & Tremaine, S. 1978 The velocity dispersion in Saturn’s rings. Icarus 34, 227239.CrossRefGoogle Scholar
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.CrossRefGoogle Scholar
Guazzelli, E. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Gupta, R. & Alam, M. 2017 Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow. Phys. Rev. E 95, 022903.Google ScholarPubMed
Hinch, E. J. 1977 An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695720.CrossRefGoogle Scholar
Jackson, R. 2000 Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jenkins, J. T. & Richman, M. W. 1985 Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal. 87, 355377.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1988 Plane simple shear of smooth inelastic circular disks. J. Fluid Mech. 192, 313328.CrossRefGoogle Scholar
Joseph, D. D. & Saut, J. C. 1990 Short-wave instabilities and ill-posed initial-value problems. Theor. Comput. Fluid Dyn. 1, 191227.CrossRefGoogle Scholar
Lhuillier, D. 2009 Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21, 023302.CrossRefGoogle Scholar
Koch, D. L. & Sangani, A. S. 1999 Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400, 229263.CrossRefGoogle Scholar
Kong, B., Fox, R. O., Feng, H., Capecelatro, P. R. & Desjardins, O. 2017 Euler–Euler anisotropic Gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence. AIChE J. 63 (7), 26302643.CrossRefGoogle Scholar
Lutsko, J. F. 2004 Rheology of dense polydisperse granular fluids under shear. Phys. Rev. E 70, 061101.Google ScholarPubMed
Montanero, J. M. & Santos, A. 1997 Viscometric effects in a dense hard-sphere fluid. Physica A 240, 229238.CrossRefGoogle Scholar
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.CrossRefGoogle Scholar
Nott, P. R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23, 043304.CrossRefGoogle Scholar
Richman, M. W. 1989 The source of second moment in dilute granular flows of highly inelastic spheres. J. Rheol. 33, 12931306.CrossRefGoogle Scholar
Rongali, R. & Alam, M. 2018a Asymptotic expansion and Padé-approximants for acceleration-driven Poiseuille flow of a rarefied gas: Bulk hydrodynamics and rheology. Phys. Rev. E 98, 012115.CrossRefGoogle Scholar
Rongali, R. & Alam, M. 2018b Asymptotic expansion and Padé-approximants for gravity-driven Poiseuille flow of a heated granular gas: competition between inelasticity and forcing, up-to Burnett order. Phys. Rev. E 98, 052144.CrossRefGoogle Scholar
Rubinstein, G. J., Ozel, A., Yin, X., Derksen, J. J. & Sundaresan, S. 2017 Lattice Boltzmann simulations of low-Reynolds number flow past fluidized spheres: effect of inhomogeneities on the drag force. J. Fluid Mech. 833, 599630.CrossRefGoogle Scholar
Saha, S. & Alam, M. 2014 Non-Newtonian stress, collisional dissipation and heat flux in the shear flow of inelastic disks: a reduction via Grad’s moment method. J. Fluid Mech. 757, 251296.CrossRefGoogle Scholar
Saha, S. & Alam, M. 2016 Normal stress differences, their origin and constitutive relations for a sheared granular fluid. J. Fluid Mech. 795, 549580.CrossRefGoogle Scholar
Saha, S. & Alam, M. 2017 Revisiting ignited-quenched transition and the non-Newtonian rheology of a sheared dilute gas–solid suspension. J. Fluid Mech. 833, 206246.CrossRefGoogle Scholar
Sangani, A. S., Mo, G., Tsao, H.-K. & Koch, D. L. 1996 Simple shear flows of dense gas–solid suspensions at finite Stokes numbers. J. Fluid Mech. 313, 309341.CrossRefGoogle Scholar
Santos, A., Brey, J. J. & Dufty, J. F. 1986 Divergence of the Chapman-Enskog expansion. Phys. Rev. Lett. 56, 15711574.CrossRefGoogle ScholarPubMed
Savage, S. B. & Jeffrey, D. J. 1981 The stress tensor in a granular flow at high shear rates. J. Fluid Mech. 110, 255272.CrossRefGoogle Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 4174.CrossRefGoogle Scholar
Shukhman, G. 1984 Collisional dynamics of particles in Saturn’s rings. Sov. Astron. 28, 547584.Google Scholar
Suzuki, K. & Hayakawa, H. 2019 Theory for the rheology of dense non-Brownian suspensions: divergence of viscosities and 𝜇-J rheology. J. Fluid Mech. 864, 206246.CrossRefGoogle Scholar
Tsao, H.-K. & Koch, D. L. 1995 Simple shear flows of dilute gas–solid suspensions. J. Fluid Mech. 296, 211246.CrossRefGoogle Scholar
Verberg, R. & Koch, D. L. 2006 Rheology of particle suspensions with low to moderate fluid inertia at finite particle inertia. Phys. Fluid 18, 083303.CrossRefGoogle Scholar
Vié, A., Doisneau, F. & Massot, M. 2015 On the anisotropic Gaussian velocity closure for inertial-particle laden flow. Commun. Comput. Phys. 17, 146.CrossRefGoogle Scholar
Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185220.CrossRefGoogle Scholar
Supplementary material: File

Saha and Alam supplementary material

Saha and Alam supplementary material

Download Saha and Alam supplementary material(File)
File 1.2 MB