Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T13:34:05.600Z Has data issue: false hasContentIssue false

Bolgiano–Obukhov scaling in two-dimensional isotropic convection

Published online by Cambridge University Press:  18 May 2022

Jin-Han Xie
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China Joint Laboratory of Marine Hydrodynamics and Ocean Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Shandong 266237, PR China
Shi-Di Huang
Affiliation:
Department of Mechanics and Aerospace Engineering and Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China

Abstract

The existence of Bolgiano–Obukhov (BO) scaling in Rayleigh–Bénard convection (RBC) has long been speculated. However, due to the inhomogeneity and anisotropy of the flow, and the lack of clear scale separation, no conclusive evidence has been found. To avoid these non-ideal factors, we construct an idealized isotropic convection system by introducing an additional horizontal buoyancy field to RBC in a doubly periodic domain. We focus on the two-dimensional case so that its upscale kinetic energy flux can enable a long inertial range for detecting the BO scaling. Through direct numerical simulations of this system, we justify the existence of BO scaling using second- and third-order structure functions, which are in good agreement with our theoretically obtained scaling relations from the Kármán–Howarth–Monin equations. These theoretical and numerical results provide direct support for the conjecture that the existence of the BO scaling in RBC is associated with the inverse kinetic energy cascade. For higher-order structure functions, we found strong intermittent effects in the buoyancy field, but not in the velocity. By comparing the present system with the canonical anisotropic RBC in a periodic domain, the effects of anisotropy on the scaling properties are elucidated.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, R., Alexakis, A., Brachet, M.E. & Tuckerman, L.S. 2020 Turbulent cascade, bottleneck, and thermalized spectrum in hyperviscous flows. Phys. Rev. Fluids 5, 024601.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48 (1), R29R32.CrossRefGoogle ScholarPubMed
Biferale, L., Calzavarini, E., Toschi, F. & Tripiccione, R. 2003 Universality of anisotropic fluctuations from numerical simulations of turbulent flows. Europhys. Lett. 64 (4), 461467.CrossRefGoogle Scholar
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43164.CrossRefGoogle Scholar
Biskamp, D., Hallatschek, K. & Schwarz, E. 2001 Scaling laws in two-dimensional turbulent convection. Phys. Rev. E 63, 045302(R).CrossRefGoogle ScholarPubMed
Biskamp, D. & Schwarz, E. 1997 Scaling properties of turbulent convection in two-dimensional periodic systems. Europhys. Lett. 40 (6), 637642.CrossRefGoogle Scholar
Boffetta, G., Celani, A. & Vergassola, M. 2000 Inverse energy cascade in two-dimensional turbulence: deviations from Gaussian behavior. Phys. Rev. E 61 (1), R29.CrossRefGoogle ScholarPubMed
Boffetta, G., De Lillo, F., Mazzino, A. & Musacchio, S. 2012 Bolgiano scale in confined Rayleigh–Taylor turbulence. J. Fluid Mech. 690, 426440.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Boffetta, G. & Mazzino, A. 2017 Incompressible Rayleigh–Taylor turbulence. Annu. Rev. Fluid Mech. 49, 119143.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2009 Kolmogorov scaling and intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E 79, 065301.CrossRefGoogle ScholarPubMed
Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 22262229.CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1997 Turbulent convection driven by a constant temperature gradient. J. Sci. Comput. 12 (3), 305351.CrossRefGoogle Scholar
Calzavarini, E., Doering, C.R., Gibbon, J.D., Lohse, D., Tanabe, A. & Toschi, F. 2006 Exponentially growing solutions in homogeneous Rayleigh–Bénard convection. Phys. Rev. E 73, 0345301(R).CrossRefGoogle ScholarPubMed
Calzavarini, E., Toschi, F. & Tripiccione, R. 2002 Evidences of Bolgiano–Obhukhov scaling in three-dimensional Rayleigh–Bénard convection. Phys. Rev. E 66, 016304.CrossRefGoogle ScholarPubMed
Camussi, R. & Verzicco, R. 2004 Temporal statistics in high Rayleigh number convective turbulence. Eur. J. Mech. B/Fluids 23, 427442.CrossRefGoogle Scholar
Celani, A., Lanotte, A., Mazzino, A. & Vergassola, M. 2000 Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84, 23852388.CrossRefGoogle ScholarPubMed
Celani, A., Matsumoto, T., Mazzino, A. & Vergassola, M. 2002 Scaling and universality in turbulent convection. Phys. Rev. Lett. 88, 054503.CrossRefGoogle ScholarPubMed
Celani, A., Mazzino, A. & Vergassola, M. 2001 Thermal plume turbulence. Phys. Fluids 212, 21332135.CrossRefGoogle Scholar
Celani, A., Mazzino, A. & Vozella, L. 2006 Rayleigh–Taylor turbulence in two dimensions. Phys. Rev. Lett. 96, 134504.CrossRefGoogle ScholarPubMed
Chertkov, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Res. Lett. 91 (11), 115001.CrossRefGoogle ScholarPubMed
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Ching, E.S.C. 2007 Scaling laws in the central region of confined turbulent thermal convection. Phys. Rev. E 75, 056302.CrossRefGoogle ScholarPubMed
Ching, E.S.C. 2014 Statistics and Scaling in Turbulent Rayleigh–Bénard Convection. Springer.CrossRefGoogle Scholar
Ching, E.S.C., Tsang, Y.-K., Fok, T.N., He, X. & Tong, P. 2013 Scaling behavior in turbulent Rayleigh–Bénard convection revealed by conditional structure functions. Phys. Rev. E 87, 013005.CrossRefGoogle ScholarPubMed
Cho, J.Y.N. & Lindborg, E. 2001 Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations. J. Geophys. Res. 106 (D10), 1022310232.CrossRefGoogle Scholar
Chong, K.L., Huang, S.-D., Kaczorowski, M. & Xia, K.-Q. 2015 Condensation of coherent structures in turbulent flows. Phys. Rev. Lett. 115, 264503.CrossRefGoogle ScholarPubMed
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys. 22, 469473.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S.S., Wirth, A. & Zhu, J.-Z. 2008 Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101, 144501.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 1991 Fourier–Weierstrass mode analysis for thermally driven turbulence. Phys. Rev. Lett. 67, 445448.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 1992 Scaling in hard turbulent Rayleigh–Bénard flow. Phys. Rev. A 46, 903917.CrossRefGoogle ScholarPubMed
Haugen, N.E.L. & Brandenburg, A. 2004 Inertial range scaling in numerical turbulence with hyperviscosity. Phys. Rev. E 70, 026405.CrossRefGoogle ScholarPubMed
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.CrossRefGoogle ScholarPubMed
Jimenez, J. 1994 Hyperviscous vortices. J. Fluid Mech. 279, 169176.CrossRefGoogle Scholar
Kaczorowski, M., Chong, K.-L. & Xia, K.-Q. 2014 Turbulent flow in the bulk of Rayleigh–Bénard convection: aspect-ratio dependence of the small-scale properties. J. Fluid Mech. 747, 73102.CrossRefGoogle Scholar
Kaczorowski, M. & Xia, K.-Q. 2013 Turbulent flow in the bulk of Rayleigh–Bénard convection: small-scale properties in a cubic cell. J. Fluid Mech. 722, 596617.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417.CrossRefGoogle Scholar
Kunnen, R.P.J. & Clercx, H.J.H. 2014 Probing the energy cascade of convective turbulence. Phys. Rev. E 90, 063018.CrossRefGoogle ScholarPubMed
Kunnen, R.P.J., Clercx, H.J.H., Geurts, B.J., van Bokhoven, L.J.A., Akkermans, R.A.D. & Verzicco, R. 2008 Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.CrossRefGoogle ScholarPubMed
Li, X.-M., He, J.-D., Tian, Y., Hao, P. & Huang, S.-D. 2021 a Effects of Prandtl number in quasi-two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 915, A60.CrossRefGoogle Scholar
Li, X.-M., Huang, S.-D., Ni, R. & Xia, K.-Q. 2021 b Lagrangian velocity and acceleration measurements in plume-rich regions of turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 6, 053503.CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.CrossRefGoogle Scholar
Lohse, D. & Toschi, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90 (3), 034502.CrossRefGoogle ScholarPubMed
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
L'vov, V.S. 1991 Spectra of velocity and temperature fluctuations with constant entropy flux of fully developed free-convective turbulence. Phys. Rev. Lett. 67, 687690.CrossRefGoogle ScholarPubMed
Mashiko, T., Tsuji, Y., Mizuno, T. & Sano, M. 2004 Instantaneous measurement of velocity fields in developed thermal turbulence in mercury. Phys. Rev. E 69, 036306.CrossRefGoogle ScholarPubMed
Mazzino, A. 2017 Two-dimensional turbulent convection. Phys. Fluids 29, 111102.CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. Dover (reprinted 2007).Google Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2011 Local energy dissipation rate balances local heat flux in the center of turbulent thermal convection. Phys. Rev. Lett. 107, 174503.CrossRefGoogle Scholar
Obukhov, A.M. 1949 Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR Geogr. Geofiz 13, 5869.Google Scholar
Obukhov, A.M. 1959 On influence of buoyancy forces on the structure of temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 125, 12461248.Google Scholar
Seychelles, F., Amarouchene, Y., Bessafi, M. & Kellay, H. 2008 Thermal convection and emergence of isolated vortices in soap bubbles. Phys. Rev. Lett. 100, 144501.CrossRefGoogle ScholarPubMed
Seychelles, F., Ingremeau, F., Pradere, C. & Kellay, H. 2010 From intermittent to nonintermittent behavior in two dimensional thermal convection in a soap bubble. Phys. Rev. Lett. 105, 264502.CrossRefGoogle Scholar
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.CrossRefGoogle ScholarPubMed
Verma, M.K., Kumar, A. & Pandey, A. 2017 Phenomenology of buoyancy-driven turbulence: recent results. New J. Phys. 19, 025012.CrossRefGoogle Scholar
Wu, X.-Z., Kadanoff, L., Libchaber, A. & Sano, M. 1990 Frequency power spectrum of temperature fluctuations in free convection. Phys. Rev. Lett. 64, 21402143.CrossRefGoogle ScholarPubMed
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3, 052001.CrossRefGoogle Scholar
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321324.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2018 Exact third-order structure functions for two-dimensional turbulence. J. Fluid Mech. 851, 672686.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2019 a Third-order structure functions for isotropic turbulence with bidirectional energy transfer. J. Fluid Mech. 877, R3.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2019 b Two-dimensional isotropic inertia–gravity wave turbulence. J. Fluid Mech. 872, 752783.CrossRefGoogle Scholar
Yakhot, V. 1992 4/5 Kolmogorov law for statistically stationary turbulence: application to high-Rayleigh- number Bénard convection. Phys. Rev. Lett. 69, 769771.CrossRefGoogle ScholarPubMed
Zhang, J. & Wu, X.L. 2005 Velocity intermittency in a buoyancy subrange in a two-dimensional soap film convection experiment. Phys. Rev. Lett. 94, 234501.CrossRefGoogle Scholar
Zhang, J., Wu, X.L. & Xia, K.-Q. 2005 Density fluctuations in strongly stratified two-dimensional turbulence. Phys. Rev. Lett. 94, 174503.CrossRefGoogle ScholarPubMed
Zhou, Q. 2013 Temporal evolution and scaling of mixing in two-dimensional Rayleigh–Taylor turbulence. Phys. Fluids 25, 085107.Google Scholar
Zhou, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361372.CrossRefGoogle Scholar