Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T06:23:51.106Z Has data issue: false hasContentIssue false

Bénard-von Kármán instability: transient and forced regimes

Published online by Cambridge University Press:  21 April 2006

M. Provansal
Affiliation:
Laboratoire de Recherche en Combustion, U.A 1117 du CNRS, Université de Provence, Centre de Saint-Jérôme, 13397 Marseille cedex 13, France
C. Mathis
Affiliation:
Laboratoire de Physique de la Matière Condensée, U.A 190 du CNRS, Université de Nice, Parc Valrose, 06034 Nice, France
L. Boyer
Affiliation:
Laboratoire de Recherche en Combustion, U.A 1117 du CNRS, Université de Provence, Centre de Saint-Jérôme, 13397 Marseille cedex 13, France

Abstract

The wake of a circular cylinder is investigated near the oscillation threshold by means of a laser probe. Above the threshold the transient regime is studied and described by a Stuart-Landau law (already found to be relevant in explaining free-oscillating regimes). Below the critical point, impulse and resonant regimes are examined, so the coefficients of the Stuart-Landau equation are determined.

Moreover, in the supercritical regime, the behaviour of the (externally forced) oscillating system is described, varying parameters such as threshold deviation, forcing frequency and amplitude. The different zones of entrainment and desynchronization are given for simple or harmonic frequency.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BÉnard, H. 1908 Formation des centres de giration à l'arrière d'un obstacle en mouvement. C. R. Acad. Sci. Paris 147, 839.Google Scholar
BergÉ, P., Pomeau, Y. & Vidal, C. 1984 L'ordre dans le Chaos. Hermann.
Berger, E. & Wille, R. 1972 Periodic flow phenomena. Ann. Rev. Fluid Mech. 4, 313340.Google Scholar
Bishop, R. & Hassan, A. 1964 The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. Lond. A 277, 3250.Google Scholar
Blevins, R. D. 1985 The effect of sound on vortex shedding from cylinders. J. Fluid Mech. 161, 217237.Google Scholar
Braza, M. 1981 Simulation numérique du décollement instationnaire externe par une formulation vitesse-pression. Application à l’écoulement autour d'un cylindre. Thesis, Université de Toulouse.
Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. J. Fluid Mech. 79, 237.Google Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98, 819855.Google Scholar
Gambaudo, J. M. 1983 Perturbation of a Hopf bifurcation by an external time-periodic forcing. Thesis, Université de Nice.
Gaster, M. 1971 Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech. 46, 565576.Google Scholar
Gollub, J. & Freilich, M. 1981 Critical exponents and generalized potential for the Taylor instability. In Fluctuations, Instabilities and Phase Transitions (ed. T. Riste), pp. 195203. NATO Report.
Haldenwang, P. & Labrosse, G. 1986 2D and 3D spectral Chebyshev solutions for free convection at high Rayleigh number. Proc. Sixth Intl Symp. on Finite element methods in flow problems, Antibes, pp. 261267.
Hussain, A. K. M. F. & Ramjee, V. 1976 Periodic wake behind a circular cylinder at low Reynolds numbers. Aero. Q. May 123–141.
Jackson, C. P. 1987 A finite element study of the onset of vortex-shedding past variously shaped bodies. J. Fluid Mech. 182, 2345.Google Scholar
Joseph, D. D. 1981 Hydrodynamic stability and bifurcation. In Hydrodynamics Instabilities and the Transition to Turbulence (ed. H. Swinney & J. Gollub), pp. 2776. Springer.
KÁrmÁn, T. Von 1911 Uber den Mechanismus der Widerstander den ein bewegter Körper in einer Flüsseigkeit afahrt. Gott. Nachr, 509–517.
Koch, W. 1985 Local instability characteristics and frequency determination of self excited wake flows. J. Sound Vib. 99, 5383.Google Scholar
Koopmann, G. H. 1967 The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech. 28, 501512.Google Scholar
Kuramoto, Y. 1984 Chemical Oscillations, Waves and Turbulence. Springer.
Landau, L. D. 1944 On the problem of turbulence. C.R. Acad. Sci. URSS 44, 311314.Google Scholar
Landau, L. & Lifshitz, E. 1971 Mécanique des Fluides. Moscow: Mir.
Libchaber, A. & Maurer, J. 1981 A Rayleigh-Bénard experiment: helium in a small box. In Nonlinear Phenomena at Phase Transitions and Instabilities (ed. T. Riste), pp. 259286. NATO Report.
Maclaughlin, J. B. & Orszag, S. 1982 Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123142.Google Scholar
Mathis, C. 1983 Propriétés des composantes de vitesse transverses dans l’écoulement de Bénard-von Kármán aux faibles nombres de Reynolds. Thesis, Université Aix-Marseille.
Mathis, C., Provansal, M. & Boyer, L. 1984a The Bénard-von Kármán instability: an experimental study near the threshold. J. Phys. Paris Lett. 45, 483491.Google Scholar
Mathis, C., Provansal, M. & Boyer, L. 1984b The rotating grating applied to the study of the Bénard-von Kármán instability near the threshold. Proc. Second Intl Symp. on Applications of Laser Anemometry to Fluid Mechanics, Lisbon, p. 12.5.
Meiron, D., Saffman, P. G. & Schatzman, J. 1984 The linear two-dimensional stability of inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147, 187212.Google Scholar
Nakamura, I. 1976 Steady wake behind a sphere. Phys. Fluids, 19, 58.Google Scholar
Palm, E. 1960 On the tendency towards hexagonal cells in steady convection. J. Fluid Mech. 8, 183192.Google Scholar
Peterka, J. & Richardson, P. 1969 Effect of sound on separated flows. J. Fluid Mech. 37, 265287.Google Scholar
Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Tech. Note 2913, 171.Google Scholar
Ruelle, D. & Takens, F. 1979 On the nature of turbulence. Commun. Math. Phys. 20, 167192.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982 Stability of vortex street of finite vortices. J. Fluid Mech. 117, 171185.Google Scholar
Sreenivasan, K. R. 1985 Transition and turbulence in fluid flows and low-dimensional chaos. In Frontiers in Fluid Mechanics (ed. S. H. Davis & J. L. Lumley), pp. 4166. Springer.
Strykowski, P. J. 1986 The control of absolutely and convectively unstable flows. PhD thesis, Yale University.
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.Google Scholar
Stuart, J. T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. J. Fluid Mech. 9, 353370.Google Scholar
Tam, C. 1978 A note on vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech. 45, 203208.Google Scholar
Toebes, G. 1969 The unsteady flow and wake near an oscillating cylinder. Trans ASME D: J. Basic Engng 91, 493505Google Scholar
Tritton, D. 1971 A note on vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech. 45, 203208.Google Scholar