Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T01:00:13.733Z Has data issue: false hasContentIssue false

Balanced ellipsoidal vortex equilibria in a background shear flow at finite Rossby number

Published online by Cambridge University Press:  15 September 2021

William J. McKiver*
Affiliation:
ISMAR-CNR, Arsenale - Tesa 104, Castello 2737/F, 30122Venice, Italy
*
Email address for correspondence: [email protected]

Abstract

We consider a uniform ellipsoid of potential vorticity (PV), where we exploit analytical solutions derived for a balanced model at the second order in the Rossby number, the next order to quasi-geostrophic (QG) theory, the so-called QG+1 model. We consider this vortex in the presence of an external background shear flow, acting as a proxy for the effect of external vortices. For the QG model the system depends on four parameters, the height-to-width aspect ratio of the vortex, $h/r$, as well as three parameters characterising the background flow, the strain rate, $\gamma$, the ratio of the background rotation rate to the strain, $\beta$, and the angle from which the flow is applied, $\theta$. However, the QG+1 model also depends on the PV, as well as the Prandtl ratio, $f/N$ ($f$ and $N$ are the Coriolis and buoyancy frequencies, respectively). For QG and QG+1 we determine equilibria for different values of the background flow parameters for increasing values of the imposed strain rate up to the critical strain rate, $\gamma _c$, beyond which equilibria do not exist. We also compute the linear stability of this vortex to second-order modes, determining the marginal strain $\gamma _m$ at which ellipsoidal instability erupts. The results show that for QG+1 the most resilient cyclonic ellipsoids are slightly prolate, while anticyclonic ellipsoids tend to be more oblate. The highest values of $\gamma _m$ occur as $\beta \to 1$. For large values of $f/N$, changes in the marginal strain rates occur, stabilising anticyclonic ellipsoids while destabilising cyclonic ellipsoids.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamyan, M.G. 2016 Anticyclonic vortex in a protoplanetary disk. Astrophysics 59 (2), 265271.CrossRefGoogle Scholar
Armi, L., Herbert, D., Oakey, N., Price, J., Richardson, P., Rossby, T. & Ruddick, B. 1989 Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr. 19, 354370.2.0.CO;2>CrossRefGoogle Scholar
Assassi, C., et al. 2016 An index to distinguish surface- and subsurface-intensified vortices from surface observations. J. Phys. Oceanogr. 46, 25292552.CrossRefGoogle Scholar
Bashmachnikov, I., Neves, F., Calheiros, T. & Carton, X. 2015 Properties and pathways of Mediterranean water eddies in the Atlantic. Progr. Oceanogr. 137, 149172.CrossRefGoogle Scholar
Bosse, A., et al. 2016 Scales and dynamics of Submesoscale Coherent Vortices formed by deep convention in the northwestern Mediterranean Sea. J. Geophys. Res. Oceans 121, 77167742.CrossRefGoogle Scholar
Carlson, B.C. 1965 On computing elliptic integrals and functions. J. Maths Phys. 44, 3551.Google Scholar
Chelton, D.B., Schlax, M.G. & Samelson, R.M. 2011 Global observations of nonlinear mesoscale eddies. Progr. Oceanogr. 91 (2), 167216.CrossRefGoogle Scholar
Damien, P., Bosse, A., Testor, P., Marsaleix, P. & Estournel, C. 2017 Modeling postconvective submesoscale coherent vortices in the Northwestern Mediterranean Sea. J. Geophys. Res. Oceans 122, 99379961.CrossRefGoogle Scholar
Dilmahamod, A.F., Aguiar-González, B., Penven, P., Reason, C.J.C., De Ruijter, W.P.M., Malan, N. & Hermes, J.C. 2018 SIDDIES corridor: a major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean. J. Geophys. Res. Oceans 123, 54065425.CrossRefGoogle Scholar
Dong, C., McWilliams, J.C., Liu, Y. & Chen, D. 2014 Global heat and salt transports by eddy movement. Nature Commun. 5 (1), 3294.CrossRefGoogle ScholarPubMed
Dritschel, D.G, Reinaud, J.N. & McKiver, W.J. 2004 The quasi-geostrophic ellipsoidal vortex model. J. Fluid Mech. 505, 201223.CrossRefGoogle Scholar
Dritschel, D.G. & Viúdez, Á. 2003 A balanced approach to modelling rotating stably stratified geophysical flows. J. Fluid Mech. 488, 123150.CrossRefGoogle Scholar
Dritschel, D.G. & Viúdez, Á. 2007 The persistence of balance in geophysical flows. J. Fluid Mech. 570, 365383.CrossRefGoogle Scholar
Dritschel, D.G. & McKiver, W.J. 2015 Effect of Prandtl's ratio on balance in geophysical turbulence. J. Fluid Mech. 777, 569590.CrossRefGoogle Scholar
Ford, R., McIntyre, M.E. & Norton, W.A. 2000 Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57, 12361254.2.0.CO;2>CrossRefGoogle Scholar
Furey, H., Bower, A., Perez-Brunius, P., Hamilton, P. & Leben, R. 2018 Deep eddies in the Gulf of Mexico observed with floats. J. Phys. Oceanogr. 48, 27032719.CrossRefGoogle Scholar
Graves, L.P., McWilliams, J.C. & Montgomery, M.T. 2006 Vortex evolution due to straining: a mechanism for dominance of strong, interior anticyclones. Geophys. Astrophys. Fluid Dyn. 100 (3), 151183.CrossRefGoogle Scholar
Hashimoto, H., Shimonishi, T. & Miyazaki, T. 1999 Quasigeostrophic ellipsoidal vortices in a two-dimensional strain field. J. Phys. Soc. Japan 68 (12), 38633880.CrossRefGoogle Scholar
Hassanzadeh, P., Marcus, P.S. & Le Gal, P. 2012 The universal aspect ratio of vortices in rotating stratified flows: theory and simulation. J. Fluid Mech. 706, 4657.CrossRefGoogle Scholar
Koshel, K.V., Ryzhov, E.A. & Zhmur, V.V. 2013 Diffusion-affected passive scalar transport in an ellipsoidal vortex in a shear flow. Nonlinear Process. Geophys. 20, 437444.CrossRefGoogle Scholar
Lemasquerier, D., Facchini, G., Favier, B. & Le Bars, M. 2020 Remote determination of the shape of Jupiter's vortices from laboratory experiments. Nat. Phys. 16 (6), 695700.CrossRefGoogle ScholarPubMed
McKiver, W.J. 2015 The ellipsoidal vortex: a novel approach to geophysical turbulence. Adv. Maths Phys. 2015, 613683.Google Scholar
McKiver, W.J. 2020 Balanced ellipsoidal vortex at finite Rossby number. Geophys. Astrophys. Fluid Dyn. 114 (4–5), 453480.CrossRefGoogle Scholar
McKiver, W.J. & Dritschel, D.G. 2003 The motion of a fluid ellipsoid in a general linear background flow. J. Fluid Mech. 474, 147173.CrossRefGoogle Scholar
McKiver, W.J. & Dritschel, D.G. 2006 The stability of a quasi-geostrophic ellipsoidal vortex in a background shear flow. J. Fluid Mech. 560, 117.CrossRefGoogle Scholar
McKiver, W.J. & Dritschel, D.G. 2008 Balance in non-hydrostatic rotating stratified turbulence. J. Fluid Mech. 596, 201219.CrossRefGoogle Scholar
McKiver, W.J. & Dritschel, D.G. 2016 Balanced solutions for an ellipsoidal vortex in a rotating stratified flow. J. Fluid Mech. 802, 333358.CrossRefGoogle Scholar
McWilliams, J.C. 2008 The nature and consequences of oceanic eddies. In Geophysical Monograph Series, vol. 177, pp. 5–15. American Geophysical Union.CrossRefGoogle Scholar
Meacham, S.P. 1992 Quasigeostrophic, ellipsoidal vortices in a stratified fluid. Dyn. Atmos. Oceans 16, 189223.CrossRefGoogle Scholar
Meacham, S.P., Pankratov, K.K., Shchepetkin, A.F. & Zhmur, V.V. 1994 The interaction of ellipsoidal vortices with background shear flows in a stratified fluid. Dyn. Atmos. Oceans 21, 167212.CrossRefGoogle Scholar
Miyazaki, T., Ueno, K. & Shimonishi, T. 1999 Quasigeostrophic tilted spheroidal vortices. J. Phys. Soc. Japan 68 (8), 25922601.CrossRefGoogle Scholar
Muraki, D.J., Snyder, C. & Rotunno, R. 1999 The next-order corrections to quasigeostrophic theory. J. Atmos. Sci. 56, 15471560.2.0.CO;2>CrossRefGoogle Scholar
Paillet, J., Le Cann, B., Carton, X., Morel, Y. & Serpette, A. 2002 Dynamics and evolution of a northern meddy. J. Phys. Oceanogr. 32, 5579.2.0.CO;2>CrossRefGoogle Scholar
Reinaud, J. & Dritschel, D.G. 2002 The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech. 469, 287315.CrossRefGoogle Scholar
Reinaud, J. & Dritschel, D.G. 2018 The merger of geophysical vortices at finite Rossby and Froude number. J. Fluid Mech. 848, 388410.CrossRefGoogle Scholar
Reinaud, J., Dritschel, D.G. & Koudella, C.R. 2003 The shape of vortices in quasi-geostrophic turbulence. J. Fluid Mech. 474, 175191.CrossRefGoogle Scholar
Rhines, P.B. 1986 Vorticity dynamics of the oceanic general circulation. Ann. Rev. Fluid Mech. 18, 433497.CrossRefGoogle Scholar
Sánchez-Lavega, A., et al. 2021 Jupiter's great red spot: strong interactions with incoming anticyclones in 2019. J. Geophys. Res. Planets 126, e2020JE006686.CrossRefGoogle Scholar
Tsang, Y-K. & Dritschel, D.G. 2015 Ellipsoidal vortices in rotating stratified fluids: beyond the quasi-geostrophic approximation. J. Fluid Mech. 762, 196231.CrossRefGoogle Scholar
Xu, A., Yu, F., Nan, F. & Ren, Q. 2020 Characteristics of subsurface mesoscale eddies in the northwestern tropical Pacific Ocean from an eddy-resolving model. J. Ocean. Limnol. 38, 14211434.CrossRefGoogle Scholar
Yang, G-B., et al. 2019 Subsurface cyclonic eddies observed in the southeastern tropical Indian Ocean. J. Geophys. Res. 124 (10), 72477260.CrossRefGoogle Scholar
Zhmur, V.V. & Pankratov, K.K. 1989 Dynamics of a semi-ellipsoidal subsurface vortex in a nonuniform flow. Okeanologia 29, 150154.Google Scholar
Zhmur, V.V. & Shchepetkin, A.F. 1991 Evolution of an ellipsoidal vortex in a stratified ocean. Survivability of the vortex in a flow with vertical shear. Izv. Akad. Nauk. SSSR Phys. Atmos. Ocean 27, 492503.Google Scholar