Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T11:55:48.508Z Has data issue: false hasContentIssue false

Axisymmetric buoyant–thermocapillary flow in sessile and hanging droplets

Published online by Cambridge University Press:  15 August 2017

Saeed Masoudi
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
Hendrik C. Kuhlmann*
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
*
Email address for correspondence: [email protected]

Abstract

The steady axisymmetric incompressible flow in a droplet sitting on or hanging from a flat plate is calculated numerically. In the limit of large mean surface tension the liquid–gas interface is spherical which allows the use of boundary-fitted toroidal coordinates. The flow is driven by thermocapillary and buoyant forces induced by a linear variation of the ambient temperature normal to the perfectly conducting wall. We present benchmark-quality results for the streamfunction and temperature fields, varying the contact angle, the thermocapillary Reynolds number, the Prandtl number, the Grashof number and the interfacial heat-transfer coefficient including the latent heat of evaporation. Scaling laws for the strength of the flow are provided for asymptotically large Marangoni numbers.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Sharafi, A., Ali, H., Yilbas, B. S., Sahin, A. Z., Khaled, M., Al-Aqeeli, N. & Al-Sulaiman, F. 2016 Influence of thermalcapillary and buoyant forces on flow characteristics in a droplet on hydrophobic surface. Intl J. Therm. Sci. 102, 239253.Google Scholar
Arfken, G. 1985 Mathematical Methods for Physicists, 3rd edn. Academic.Google Scholar
Barash, L. Y., Bigioni, T. P., Vinokur, V. M. & Shchur, L. N. 2009 Evaporation and fluid dynamics of a sessile drop of capillary size. Phys. Rev. E 79, 046301.Google Scholar
Bond, W. N. & Newton, D. A. 1928 Bubbles, drops, and Stokes’ law. Phil. Mag. 5 (30), 794800; (paper 2).Google Scholar
Carle, F., Sobac, B. & Brutin, D. 2012 Hydrothermal waves on ethanol droplets evaporating under terrestrial and reduced gravity levels. J. Fluid Mech. 712, 614623.CrossRefGoogle Scholar
Cazabat, A.-M. & Guena, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6, 25912612.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chen, J. & Stebe, K. J. 1997 Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech. 340, 3559.CrossRefGoogle Scholar
Cheng, Y. T., Rodak, D. E., Wong, C. A. & Hayden, C. A. 2006 Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 17 (5), 13591362.Google Scholar
Darhuber, A. A. & Troian, S. M. 2005 Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425455.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756765.Google Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329351.Google Scholar
Erbil, H. Y. 2012 Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 170 (1–2), 6786.Google Scholar
Glowinski, R., Guidoboni, G. & Pan, T.-W. 2006 Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity. J. Comput. Phys. 216, 7691.CrossRefGoogle Scholar
Good, R. J. & Koo, M. N. 1979 The effect of drop size on contact angle. J. Colloid Interface Sci. 71 (2), 283292.Google Scholar
Guo, Z., Zhou, F., Hao, J. & Liu, W. 2005 Stable biomimetic super-hydrophobic engineering materials. J. Am. Chem. Soc. 127 (45), 1567015671.Google Scholar
Hegseth, J. J., Rashidnia, N. & Chai, A. 1996 Natural convection in droplet evaporation. Phys. Rev. E 54, 16401644.Google Scholar
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.Google Scholar
Hu, H. & Larson, R. G. 2006 Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110 (14), 70907094.Google Scholar
Johnson, R. E. & Dettre, R. H. 1964 Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J. Phys. Chem. 68 (7), 17441750.Google Scholar
Kang, S. J., Vandadi, V., Felske, J. D. & Masoud, H. 2016 Alternative mechanism for coffee-ring deposition based on active role of free surface. Phys. Rev. E 94, 063104.Google Scholar
Karapetsas, G., Matar, O. K., Valluri, P. & Sefiane, K. 2012 Convective rolls and hydrothermal waves in evaporating sessile drops. Langmuir 28 (31), 1143311439.Google Scholar
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H. A. 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116, 124501.Google Scholar
Kovasznay, L. I. G. 1948 Laminar flow behind a two-dimensional grid. Math. Proc. Camb. Phil. Soc. 44, 5862.Google Scholar
Kuhlmann, H. C., Nienhüser, C. & Rath, H. J. 1999 The local flow in a wedge between a rigid wall and a surface of constant shear stress. J. Engng Maths 36, 207218.Google Scholar
Marin, A., Liepelt, R., Rossi, M. & Kahler, C. J. 2016 Surfactant-driven flow transitions in evaporating droplets. Soft Matt. 12, 15931600.Google Scholar
Masoud, H. & Felske, J. D. 2009a Analytical solution for inviscid flow inside an evaporating sessile drop. Phys. Rev. E 79, 016301.Google Scholar
Masoud, H. & Felske, J. D. 2009b Analytical solution for Stokes flow inside an evaporating sessile drop: spherical and cylindrical cap shapes. Phys. Fluids 21 (4), 042102.Google Scholar
McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I. & Erbil, H. Y. 2005 Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21 (24), 1105311060.CrossRefGoogle ScholarPubMed
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.Google Scholar
Mollaret, R., Sefiane, K., Christy, J. R. E. & Veyret, D. 2004 Experimental and numerical investigation of the evaporation into air of a drop on a heated surface. Chem. Engng Res. Des. 82 (4), 471480.CrossRefGoogle Scholar
Nagy, P. T. & Neitzel, G. P. 2009 Failure of thermocapillary-driven permanent nonwetting droplets. Phys. Fluids 21 (11), 112106.Google Scholar
Nguyen, H. & Chen, J. 2010 Numerical study of a droplet migration induced by combined thermocapillary-buoyancy convection. Phys. Fluids 22 (12), 122101.Google Scholar
Nienhüser, C. & Kuhlmann, H. C. 2002 Stability of thermocapillary flows in non-cylindrical liquid bridges. J. Fluid Mech. 458, 3573.Google Scholar
Park, J. & Moon, J. 2006 Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22 (8), 35063513.Google Scholar
Picknett, R. G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61 (2), 336350.Google Scholar
Rienstra, S. W. 1990 The shape of a sessile drop for small and large surface tension. J. Engng Maths 24 (3), 193202.Google Scholar
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J. & Stone, H. A. 2007 Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 234502.Google Scholar
Sáenz, P. J., Sefiane, K., Kim, J., Matar, O. K. & Valluri, P. 2015 Evaporation of sessile drops: a three-dimensional approach. J. Fluid Mech. 772, 705739.Google Scholar
Savino, R., Paterna, D. & Favaloro, N. 2002 Buoyancy and Marangoni effects in an evaporating drop. Phil. Mag. 16 (4), 562574.Google Scholar
Schmitt, M. & Stark, H. 2016 Marangoni flow at droplet interfaces: three-dimensional solution and applications. Phys. Fluids 28 (1).Google Scholar
Scriven, L. E. & Sternling, C. V. 1960 The Marangoni effects. Nature 187, 186188.CrossRefGoogle Scholar
Shih, A. T. & Megaridis, C. M. 1996 Thermocapillary flow effects on convective droplet evaporation. Intl J. Heat Mass Transfer 39 (2), 247257.Google Scholar
Simic-Stefani, S., Kawaji, M. & Yoda, S. 2006 Onset of oscillatory thermocapillary convection in acetone liquid bridges: the effect of evaporation. Intl J. Heat Mass Transfer 49, 31673179.Google Scholar
Smith, M. K. & Davis, S. H. 1983 Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119144.Google Scholar
Stauber, J. M., Wilson, S. K., Duffy, B. R. & Sefiane, K. 2015 Evaporation of droplets on strongly hydrophobic substrates. Langmuir 31 (12), 36533660.Google Scholar
Thoroddsen, S. T. & Mahadevan, L. 1997 Experimental study of coating flows in a partially filled horizontally rotating cylinder. Exp. Fluids 23, 113.CrossRefGoogle Scholar
Vrentas, J. S., Narayanan, R. & Agrawal, S. S. 1981 Free surface convection in a bounded cylindrical geometry. Intl J. Heat Mass Transfer 24, 15131529.Google Scholar
Wu, Z. & Hu, W. 2011 Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mechanica 223 (3), 609626.Google Scholar
Yekta-Fard, M. & Ponter, A. B. 1988 The influences of vapor environment and temperature on the contact angle-drop size relationship. J. Colloid Interface Sci. 126 (1), 134140.CrossRefGoogle Scholar