Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T10:57:14.789Z Has data issue: false hasContentIssue false

Analytical framework for disturbance energy balance in thermoacoustic devices

Published online by Cambridge University Press:  27 December 2019

Xiaofeng Lu
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
Ricardo Martinez-Botas*
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
Jonathan Hey
Affiliation:
Mechatronics Group, Singapore Institute of Manufacturing Technology, Singapore138634, Republic of Singapore
*
Email address for correspondence: [email protected]

Abstract

Thermoacoustic devices represent a significant future opportunity in the fields of energy generation and refrigeration. A key component of this type of device is the regenerator, where the conversion between acoustic energy and thermal energy takes place. This conversion occurs due to an externally imposed temperature gradient on the walls of the regenerator channels. Hence, this paper concerns the physics of sound waves in the proximity of such walls. It establishes a new analytical framework which clarifies the disturbance energy conservation in thermoacoustic devices. In this framework, a thermoacoustic production term is proposed to quantify the generation or consumption of disturbance energy originating from the temperature gradient. An extended disturbance energy flux term is identified to account for wave growth or decay through the regenerator. The disturbance energy balance relation states that the disturbance energy flux equals the thermoacoustic production less the viscous and thermal dissipation resulting from gradients of fluctuating velocity and temperature. The analytical framework is implemented in an axisymmetric cylindrical domain; the two-dimensional nature of this work helps to uncover that the wave always decays in the region close to the wall. A dimensional analysis is conducted to identify the controlling parameters, namely the Womersley, Helmholtz and Prandtl numbers. A parametric study of the Womersley and Helmholtz numbers is conducted to showcase the new analytical methodology; the results make it possible to optimize the geometry, wave properties and working conditions of a thermoacoustic device according to the preference of its efficiency, loss and output.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395422.CrossRefGoogle Scholar
Backhaus, S. & Swift, G. W. 1999 A thermoacoustic Stirling heat engine. Nature 399 (6734), 335338.CrossRefGoogle Scholar
Backhaus, S. & Swift, G. W. 2000 A thermoacoustic-Stirling heat engine: detailed study. J. Acoust. Soc. Am. 107 (6), 31483166.CrossRefGoogle ScholarPubMed
Bassem, M. M., Ueda, Y. & Akisawa, A. 2011 Design and construction of a traveling wave thermoacoustic refrigerator. Intl J. Refrig. 34 (4), 11251131.CrossRefGoogle Scholar
Cao, N., Olson, J. R., Swift, G. W. & Chen, S. 1996 Energy flux density in a thermoacoustic couple. J. Acoust. Soc. Am. 99 (6), 34563464.CrossRefGoogle Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (part I). Acta Mechanica 1 (3), 215234.CrossRefGoogle Scholar
Dai, W., Luo, E. C., Zhang, Y. & Ling, H. 2006 Detailed study of a traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine. J. Acoust. Soc. Am. 119 (5), 26862692.CrossRefGoogle Scholar
Dowling, A. P. & Stow, S. R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5), 751764.CrossRefGoogle Scholar
Giauque, A., Poinsot, T., Brear, M. & Nicoud, F. 2006 Budget of disturbance energy in gaseous reacting flows. In Proceedings of the Summer Program, pp. 285297. Center for Turbulence Research, NASA Ames/Stanford University.Google Scholar
Hairer, E., Nørsett, S. P. & Wanner, G. 1993 Solving Ordinary Differential Equations I (2nd revised edn): Nonstiff Problems. Springer.Google Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe-flow. J. Fluid Mech. 75 (May27), 193207.CrossRefGoogle Scholar
In’t Panhuis, P. H. M. W., Rienstra, S. W., Molenaar, J. & Slot, J. J. M. 2009 Weakly nonlinear thermoacoustics for stacks with slowly varying pore cross-sections. J. Fluid Mech. 618, 4170.CrossRefGoogle Scholar
Karimi, N., Brear, M. J. & Moase, W. H. 2008 Acoustic and disturbance energy analysis of a flow with heat communication. J. Fluid Mech. 597, 6789.CrossRefGoogle Scholar
Karpov, S. & Prosperetti, A. 2002 A nonlinear model of thermoacoustic devices. J. Acoust. Soc. Am. 112 (4), 14311444.CrossRefGoogle ScholarPubMed
Lieuwen, T. C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Merkli, P. & Thomann, H. 1975 Thermoacoustic effects in a resonance tube. J. Fluid Mech. 70 (01), 161177.CrossRefGoogle Scholar
Myers, M. K. 1991 Transport of energy by disturbances in arbitrary steady flows. J. Fluid Mech. 226, 383400.CrossRefGoogle Scholar
Nicoud, F. & Poinsot, T. 2005 Thermoacoustic instabilities: should the Rayleigh criterion be extended to include entropy changes? Combust. Flame 142 (1–2), 153159.CrossRefGoogle Scholar
Ohmi, M., Iguchi, M., Kakehashi, K. & Masuda, T. 1982 Transition to turbulence and velocity distribution in an oscillating pipe-flow. Bull. JSME 25 (201), 365371.CrossRefGoogle Scholar
Pierce, A. D. 1981 Acoustics: An Introduction to its Physical Principles and Application. McGraw-Hill.Google Scholar
Poese, M. E. & Garrett, S. L. 2000 Performance measurements on a thermoacoustic refrigerator driven at high amplitudes. J. Acoust. Soc. Am. 107 (5), 24802486.CrossRefGoogle ScholarPubMed
Prince, P. J. & Dormand, J. R. 1981 High order embedded Runge–Kutta formulae. J. Comput. Appl. Maths 7 (1), 6775.CrossRefGoogle Scholar
Rott, N. 1969 Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys. 20 (2), 230243.CrossRefGoogle Scholar
Rott, N. 1975 Thermally driven acoustic oscillations. Part III: Second-order heat flux. Z. Angew. Math. Phys. 26 (1), 4349.CrossRefGoogle Scholar
Scalo, C., Lele, S. K. & Hesselink, L. 2015 Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine. J. Fluid Mech. 766, 368404.CrossRefGoogle Scholar
Swift, G. W. 1988 Thermoacoustic engines. J. Acoust. Soc. Am. 84 (4), 11451180.CrossRefGoogle Scholar
Swift, G. W. 2002 Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America.Google Scholar
Tijani, M. E. H. & Spoelstra, S. 2011 A high performance thermoacoustic engine. J. Appl. Phys. 110 (9), 093519.CrossRefGoogle Scholar
Tominaga, A. 1995 Thermodynamic aspects of thermoacoustic theory. Cryogenics 35 (7), 427440.CrossRefGoogle Scholar
Touloukian, Y. S., Liley, P. E. & Saxena, S. C.1970 Thermophysical properties of matter – the TPRC data series. Volume 3. Thermal conductivity-nonmetallic liquids and gases, Tech. Rep. Purdue University.Google Scholar
Touloukian, Y. S., Saxena, S. C. & Hestermans, P.1975 Thermophysical properties of matter – the TPRC data series. Volume 11. Viscosity. Tech. Rep. Purdue University.CrossRefGoogle Scholar
Worlikar, A. S. & Knio, O. M. 1996 Numerical simulation of a thermoacoustic refrigerator. J. Comput. Phys. 127 (2), 424451.CrossRefGoogle Scholar
Wu, Z. H., Zhang, L. M., Dai, W. & Luo, E. C. 2014 Investigation on a 1 kw traveling-wave thermoacoustic electrical generator. Appl. Energy 124, 140147.CrossRefGoogle Scholar
Yu, Z. B., Jaworski, A. J. & Backhaus, S. 2012 Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy. Appl. Energy 99, 135145.CrossRefGoogle Scholar