Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T06:51:49.607Z Has data issue: false hasContentIssue false

Analysis of wall-pressure fluctuation sources from direct numerical simulation of turbulent channel flow

Published online by Cambridge University Press:  08 July 2020

Sreevatsa Anantharamu
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota – Twin Cities, Minneapolis, MN55455, USA
Krishnan Mahesh*
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota – Twin Cities, Minneapolis, MN55455, USA
*
Email address for correspondence: [email protected]

Abstract

The sources of wall-pressure fluctuations in turbulent channel flow are studied using a novel framework. The wall-pressure power spectral density (PSD) $(\unicode[STIX]{x1D719}_{pp}(\unicode[STIX]{x1D714}))$ is expressed as an integrated contribution from all wall-parallel plane pairs, $\unicode[STIX]{x1D719}_{pp}(\unicode[STIX]{x1D714})=\int _{-\unicode[STIX]{x1D6FF}}^{+\unicode[STIX]{x1D6FF}}\int _{-\unicode[STIX]{x1D6FF}}^{+\unicode[STIX]{x1D6FF}}\unicode[STIX]{x1D6E4}(r,s,\unicode[STIX]{x1D714})\,\text{d}r\,\text{d}s$, using the Green’s function. Here, $\unicode[STIX]{x1D6E4}(r,s,\unicode[STIX]{x1D714})$ is termed the net source cross-spectral density (CSD) between two wall-parallel planes, $y=r$ and $y=s$ and $\unicode[STIX]{x1D6FF}$ is the half-channel height. Direct numerical simulation data at friction Reynolds numbers of 180 and 400 are used to compute $\unicode[STIX]{x1D6E4}(r,s,\unicode[STIX]{x1D714})$. Analysis of the net source CSD, $\unicode[STIX]{x1D6E4}(r,s,\unicode[STIX]{x1D714})$ reveals that the location of dominant sources responsible for the premultiplied peak in the power spectra at $\unicode[STIX]{x1D714}^{+}\approx 0.35$ (Hu et al., AIAA J., vol. 44, 2006, pp. 1541–1549) and the wavenumber spectra at $\unicode[STIX]{x1D706}^{+}\approx 200$ (Panton et al., Phys. Rev. Fluids, vol. 2, 2017, 094604) are in the buffer layer at $y^{+}\approx 16.5$ and 18.4 for $Re_{\unicode[STIX]{x1D70F}}=180$ and 400, respectively. The contribution from a wall-parallel plane (located at distance $y^{+}$ from the wall) to wall-pressure PSD is log-normal in $y^{+}$ for $\unicode[STIX]{x1D714}^{+}>0.35$. A dominant inner-overlap region interaction of the sources is observed at low frequencies. Further, the decorrelated features of the wall-pressure fluctuation sources are analysed using spectral proper orthogonal decomposition (POD). Instead of the commonly used $L^{2}$ inner product, we require the modes to be orthogonal in an inner product with a symmetric positive definite kernel. Spectral POD supports the case that the net source is composed of two components – active and inactive. The dominant spectral POD mode that comprises the active part contributes to the entire wall-pressure PSD. The suboptimal spectral POD modes that constitute the inactive portion do not contribute to the PSD. Further, the active and inactive parts of the net source are decorrelated because they stem from different modes. The structure represented by the dominant POD mode at the premultiplied wall-pressure PSD peak inclines in the downstream direction. At the low-frequency linear PSD peak, the dominant mode resembles a large scale vertical pattern. Such patterns have been observed previously in the instantaneous contours of rapid pressure fluctuations by Abe et al. (2005, Fourth International Symposium on Turbulence and Shear Flow Phenomena, Begel House Inc.).

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Matsuo, Y. & Kawamura, H. 2005 A DNS study of Reynolds-number dependence on pressure fluctuations in a turbulent channel flow. In Fourth International Symposium on Turbulence and Shear Flow Phenomena. Begel House Inc.Google Scholar
Bendat, J. S. & Piersol, A. G. 2011 Random Data: Analysis and Measurement Procedures. John Wiley & Sons.Google Scholar
Bernardini, M., Pirozzoli, S., Quadrio, M. & Orlandi, P. 2013 Turbulent channel flow simulations in convecting reference frames. J. Comput. Phys. 232, 16.CrossRefGoogle Scholar
Blake, W. K. 1970 Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid Mech. 44, 637660.CrossRefGoogle Scholar
Blake, W. K. 2017 Mechanics of Flow-Induced Sound and Vibration, vols 1 and 2. Academic.Google Scholar
Bradshaw, P. 1967 Inactive-motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30 (2), 241258.CrossRefGoogle Scholar
Bull, M. K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190, 299315.CrossRefGoogle Scholar
Chang, P. A. III, Piomelli, U. & Blake, W. K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11, 34343448.CrossRefGoogle Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2, 14501460.CrossRefGoogle Scholar
Corcos, G. M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18, 353378.CrossRefGoogle Scholar
De Graaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41L44.CrossRefGoogle Scholar
Farabee, T. M. & Casarella, M. J. 1991 Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids 3, 24102420.CrossRefGoogle Scholar
Frigo, M. & Johnson, S. G. 2005 The design and implementation of FFTW3. Proc. IEEE 93, 216231.CrossRefGoogle Scholar
Gerolymos, G. A., Sénéchal, D. & Vallet, I. 2013 Wall effects on pressure fluctuations in turbulent channel flow. J. Fluid Mech. 720, 1565.CrossRefGoogle Scholar
Gravante, S. P., Naguib, A. M., Wark, C. E. & Nagib, H. M. 1998 Characterization of the pressure fluctuations under a fully developed turbulent boundary layer. AIAA J. 36, 18081816.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18 (1), 011702.CrossRefGoogle Scholar
Hu, Z., Morfey, C. L. & Sandham, N. D. 2006 Wall pressure and shear stress spectra from direct numerical simulations of channel flow. AIAA J. 44, 15411549.CrossRefGoogle Scholar
Huang, N. E. & Shen, S. P. 2014 Hilbert–Huang Transform and its Applications. World Scientific.CrossRefGoogle Scholar
Jimenez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A 5 (3), 695706.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Klewicki, J. C., Priyadarshana, P. J. A. & Metzger, M. M. 2008 Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number. J. Fluid Mech. 609, 195220.CrossRefGoogle Scholar
Lumley, J. L. 2007 Stochastic Tools in Turbulence. Courier Corporation.Google Scholar
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 215240.CrossRefGoogle Scholar
Morrison, J. F. 2007 The interaction between inner and outer regions of turbulent wall-bounded flow. Phil. Trans. R. Soc. Lond. A 365, 683698.CrossRefGoogle ScholarPubMed
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Panton, R. L., Lee, M. & Moser, R. D. 2017 Correlation of pressure fluctuations in turbulent wall layers. Phys. Rev. Fluids 2, 094604.CrossRefGoogle Scholar
Park, G. I. & Moin, P. 2016 Space–time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation. Phys. Rev. Fluids 1, 024404.CrossRefGoogle ScholarPubMed
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.Google Scholar
Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25, 105102.CrossRefGoogle Scholar
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.CrossRefGoogle Scholar
Tsuji, Y., Marusic, I. & Johansson, A. V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.CrossRefGoogle Scholar
Willmarth, W. W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7, 1336.CrossRefGoogle Scholar
Willmarth, W. W. & Wooldridge, C. E. 1962 Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech. 14, 187210.CrossRefGoogle Scholar