Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T19:08:38.880Z Has data issue: false hasContentIssue false

Analysis of interscale energy transfer in a boundary layer undergoing bypass transition

Published online by Cambridge University Press:  25 April 2022

H. Yao
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
J.-P. Mollicone
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, University of Malta, Msida MSD 2080, Malta
G. Papadakis*
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

The Kármán–Howarth–Monin–Hill equation is employed to study the production and interscale energy transfer in a boundary layer undergoing bypass transition due to free-stream turbulence. The energy flux between different length scales is calculated at several streamwise locations covering the laminar, transitional and turbulent regimes. Maps of scale energy production and flux vectors are visualised on two-dimensional planes and three-dimensional hyper-planes that comprise both physical and separation spaces. In the transitional region, the maps show strong inverse cascade in the streamwise direction near the wall. The energy flux vectors emanate from a region of strong production and transfer energy to larger streamwise scales. To provide deeper insight into the origin of the inverse cascade process, we decompose the energy flux vector into components arising from nonlinear interactions between velocity fluctuations, mean flow inhomogeneity, pressure and viscous effects. The inverse cascade is mainly due to the nonlinear interaction component, and in the earliest stages of transition this component competes with that due to mean flow inhomogeneity. By superposing the instantaneous velocity fields and the energy flux vectors, we relate the inverse cascade process to the growth of turbulent spots. Once the transition process is complete, the maps become very similar to those observed in other fully developed turbulent flows, such as channel flow. Finally we characterise the nonlinear interaction term using probability density functions (PDFs) evaluated at different wall-normal heights. The PDFs are asymmetric and wide-skirted as in homogeneous isotropic turbulence, but are skewed towards positive values reflecting the inverse cascade.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near wake of a square prism. J. Fluid Mech. 825, 315352.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J. Fluid Mech. 896, A16.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D.S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Anthony, R.J., Jones, T.V. & Lagraff, J.E. 2005 High frequency surface heat flux imaging of bypass transition. Trans. ASME J. Turbomach. 127 (2), 241250.CrossRefGoogle Scholar
Antonia, R.A., Ould-Rouis, M., Anselmet, F. & Zhu, Y. 1997 Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech. 332, 395409.CrossRefGoogle Scholar
Antonia, R.A., Zhou, T., Danaila, L. & Anselmet, F. 2000 Streamwise inhomogeneity of decaying grid turbulence. Phys. Fluids 12 (11), 30863089.CrossRefGoogle Scholar
Aoyama, T., Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2005 Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box. J. Phys. Soc. Japan 74 (12), 32023212.CrossRefGoogle Scholar
Cantwell, B., Coles, D. & Dimotakis, P. 1978 Structure and entrainment in the plane of symmetry of a turbulent spot. J. Fluid Mech. 87 (4), 641672.CrossRefGoogle Scholar
Cimarelli, A. & De Angelis, E. 2012 Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids 24, 015102.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in turbulent channel flows. J. Fluid Mech. 715, 436451.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Jimenez, J. & Casciola, C.M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417436.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Schlatter, P., Brethouwer, G., Talamelli, A. & Casciola, C.M. 2015 Sources and fluxes of scale energy in the overlap layer of wall turbulence. J. Fluid Mech. 771, 407423.CrossRefGoogle Scholar
Cimarelli, A., Mollicone, J.-P., Van Reeuwijk, M. & De Angelis, E. 2021 Spatially evolving cascades in temporal planar jets. J. Fluid Mech. 910, A19.CrossRefGoogle Scholar
Danaila, L., Anselmet, F. & Zhou, T. 2004 Turbulent energy scale-budget equations for nearly homogeneous sheared turbulence. Flow Turbul. Combust. 72, 287310.CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R.A. 2001 Turbulent energy scale budget equations in a fully developed channel flow. J. Fluid Mech. 430, 87109.CrossRefGoogle Scholar
Danaila, L., Krawczynski, J.F., Thiesset, F. & Renou, B. 2012 Yaglom-like equation in axisymmetric anisotropic turbulence. Physica D 241 (3), 216223.CrossRefGoogle Scholar
Davidson, P.A. & Pearson, B.R. 2005 Identifying turbulent energy distributions in real, rather than Fourier, space. Phys. Rev. Lett. 95 (21), 214501.CrossRefGoogle ScholarPubMed
Davidson, P.A. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.CrossRefGoogle Scholar
Dubrulle, B. 2019 Beyond Kolmogorov cascades. J. Fluid Mech. 867, P1.CrossRefGoogle Scholar
Duchon, J. & Robert, R. 2000 Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13 (1), 249255.CrossRefGoogle Scholar
Durbin, P.A. 2017 Perspectives on the phenomenology and modeling of boundary layer transition. Flow Turbul. Combust. 99 (1), 123.CrossRefGoogle Scholar
Emmons, H.W. 1951 The laminar-turbulent transition in a boundary layer-part I. J. Aeronaut. Sci. 18 (7), 490498.CrossRefGoogle Scholar
Gatti, D., Chiarini, A., Cimarelli, A. & Quadrio, M. 2020 Structure function tensor equations in inhomogeneous turbulence. J. Fluid Mech. 898, A5.CrossRefGoogle Scholar
Hill, R.J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Hunt, J.C.R. & Durbin, P.A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24 (6), 375404.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.CrossRefGoogle Scholar
Jacobs, R.G. & Durbin, P.A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
de Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164 (917), 192215.CrossRefGoogle Scholar
Kendall, J.M. 1991 Studies on laminar boundary-layer receptivity to free-stream turbulence near a leading edge. In Boundary Layer Stability and Transition to Turbulence, pp. 23–30. ASME.Google Scholar
Klebanoff, P.S. 1971 Effect of free-stream turbulence on a laminar boundary layer. In Bulletin of the American Physical Society, vol. 16, p. 1323.Google Scholar
Knutsen, A.N., Baj, P., Lawson, J.M., Bodenschatz, E., Dawson, J.R. & Worth, N.A. 2020 The inter-scale energy budget in a von Kármán mixing flow. J. Fluid Mech. 895, A11.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Marati, N., Casciola, C.M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Marxen, O. & Zaki, T.A. 2019 Turbulence in intermittent transitional boundary layers and in turbulence spots. J. Fluid Mech. 860, 350383.CrossRefGoogle Scholar
Mollicone, J.-P., Battista, F., Gualtieri, P. & Casciola, C.M. 2018 Turbulence dynamics in separated flows: the generalised Kolmogorov equation for inhomogeneous anisotropic conditions. J. Fluid Mech. 841, 10121039.CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence. MIT.Google Scholar
Morkovin, M.V. 1969 On the many faces of transition. In Viscous Drag Reduction, pp. 1–31. Springer.CrossRefGoogle Scholar
Nolan, K.P. & Zaki, T.A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.CrossRefGoogle Scholar
Park, G.I., Wallace, J.M., Wu, X. & Moin, P. 2012 Boundary layer turbulence in transitional and developed states. Phys. Fluids 24 (3), 035105.CrossRefGoogle Scholar
Perry, A.E., Lim, T.T. & Teh, E.W. 1981 A visual study of turbulent spots. J. Fluid Mech. 104, 387405.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Roach, P.E. 1990 The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development: Part 1. Test cases T3A and T3B. In ERCOFTAC Workshop, Lausanne, 1990. Cambridge University Press.Google Scholar
Saikrishnan, N., De Angelis, E., Longmire, E.K., Marusic, I., Casciola, C.M. & Piva, R. 2012 Reynolds number effects on scale energy balance in wall turbulence. Phys. Fluids 24 (1), 015101.CrossRefGoogle Scholar
Singer, B.A. 1996 Characteristics of a young turbulent spot. Phys. Fluids 8 (2), 509521.CrossRefGoogle Scholar
Spalart, P.R. 1988 Direct simulation of a turbulent boundary layer up to $R_\theta =1410$. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vaughan, N.J. & Zaki, T.A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.CrossRefGoogle Scholar
Wang, Y., Choi, K.-S., Gaster, M., Atkin, C., Borodulin, V. & Kachanov, Y. 2021 Early development of artificially initiated turbulent spots. J. Fluid Mech. 916, A1.CrossRefGoogle Scholar
Wu, X., Moin, P., Wallace, J.M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292E5299.CrossRefGoogle ScholarPubMed
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 On a turbulent ‘spot’ in a laminar boundary layer. J. Fluid Mech. 78 (4), 785819.CrossRefGoogle Scholar
Xiao, D. & Papadakis, G. 2019 Nonlinear optimal control of transition due to a pair of vortical perturbations using a receding horizon approach. J. Fluid Mech. 861, 524555.CrossRefGoogle Scholar
Yao, H., Alves-Portela, F. & Papadakis, G. 2020 Evolution of conditionally averaged second-order structure functions in a transitional boundary layer. Phys. Rev. Fluids 5, 093902.CrossRefGoogle Scholar
Yasuda, T. & Vassilicos, J.C. 2018 Spatio-temporal intermittency of the turbulent energy cascade. J. Fluid Mech. 853, 235252.CrossRefGoogle Scholar
Zaki, T.A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single-and two-fluid boundary layers. J. Fluid Mech. 626, 111147.CrossRefGoogle Scholar