Article contents
An experimental investigation of the end effects on the wake of a circular cylinder towed through water at low Reynolds numbers
Published online by Cambridge University Press: 20 April 2006
Abstract
At low Reynolds numbers, three-dimensional features are frequently observed in the vortices shed behind a basically two-dimensional circular cylinder. This paper deals with the dependence of the configuration of the vortices on various end constructions. The cylinder is towed at a uniform speed in a water tank and simple flow visualization is used. It is found that the three-dimensional structure of the wake depends strongly on the flow configuration at each end of the cylinder. The boundary condition imposed on the nascent vortex lines determines the subsequent behaviour of the shed vortices. Consequently, the vortex street can be rendered more nearly two-dimensional by allowing the vortices to link outside the boundary as they approach that boundary normally. This is the case for the water–air interface when the water surface is clean. In the case of a contaminated water surface or of a solid surface acting as a boundary to the vortex street, the vortices link between themselves underneath the water surface and a strong interaction takes place behind the end of the cylinder. The subsequent effect is a bowing of the vortices towards the end of the cylinder. The free-end effect at the bottom end of the cylinder induces a strong bowing of the vortices towards that end and causes the wake to contract. It follows from the effect of surface contamination that the study of vortex wakes by the spreading of some surface contaminants might not necessarily show the true behaviour of the wake below the surface. It is postulated that slantwise shedding arises from a difference in the two end effects.
- Type
- Research Article
- Information
- Copyright
- © 1981 Cambridge University Press
References
- 94
- Cited by