Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:32:54.579Z Has data issue: false hasContentIssue false

An airfoil theory of bifurcating laminar separation from thin obstacles

Published online by Cambridge University Press:  26 April 2006

C. J. Lee
Affiliation:
Depatment of Aerospace Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA
H. K. Cheng
Affiliation:
Depatment of Aerospace Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA

Abstract

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds number Re and an airfoil thickness ratio or incidence τ and, in the domain $Re^{\frac{1}{16}}\tau = O(1)$ considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcritical Re flows.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Althaus, D. 1980 Profilpolaren für den Modellflug: Wind Kanalmessungen an Profilen im Kritischen Reynoldszahlbereich. Neckar-Verlag Vs-Villingen.
Ashley, H. & Landahl, M. 1965 Aerodynamics of Wings and Bodies. Addison-Wesley.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, p. 504. Cambridge University Press.
Brodetsky, S. 1923 Proc. R. Soc. Lond. A 102, 542.
Brown, S. N., Cheng, H. K. & Smith, F. T. 1988 J. Fluid Mech. 193, 191.
Brown, S. N. & Stewartson, K. S. 1970 J. Fluid Mech. 42, 561.
Carleman, T. 1922 Arkiv för Matematik och Fysik 16, 26.
Carmichael, B. H. 1981 NACA-CR 165803.
Cebeci, T., Stewartson, K. & Williams, P. G. 1980 AGARD CP-291 Paper 20.
Cheng, H. K. 1984 AIAA Paper 84–1612; superseded by USCAE Rep. 141 (1985).
Cheng, H. K. 1985 In Proc. Conf. Low Reynolds Number Airfoil Aerodynamics. Univ. Notre Dame. (ed. T. J. Mueller). UNDAS-CP 7712123.
Cheng, H. K. 1986 On massive laminar separation and lift anomalies in subcritical Re-range. Proc. Intl Conf. Aerodynamics at Low Reynolds Number, 16–17 October 1986. London: Royal Aeronautical Society.
Cheng, H. K. & Lee, C. J. 1985 Proc. 3rd Symp. Numerical & Physical Aspects of Aerodynamic Flows. Springer.
Cheng, H. K. & Rott, N. 1954 J. Rat. Mech. Anal. 3, no. 3.
Cheng, H. K. & Smith. F. T. 1982 Z. Angew. Math. Phys. 33, 151.
Daniels, P. G. 1979 J. Fluid Mech. 90, 289.
Elliot, J. W. & Smith, F. T. 1987 J. Fluid Mech. 179, 489.
Eppler, R. 1978 NASA TM 75328 (transl. from Ing.-Arch. 32, 1963).
Fornberg, B. 1980 J. Fluid Mech. 98, 819.
Fornberg, B. 1985 J. Comput. Phys. 61, 297.
Gaster, M. 1967 Aero. Res. Counc. R & M 3595.
Glauert, H. 1926 Aero. Res. Counc. R & M 910.
Goldstein, M. E. 1984 J. Fluid Mech. 145, 71.
Goldstein, S. 1948 Q. J. Mech. Appl. Maths 1, 43.
Holstein, H. & Bohlen, T. 1940 Lilienthal-Bericht S 10, 5.
Joose, G. & Joseph, D. D. 1980 Elementary Stability and Bifurcation Theory. Springer.
Kármán, Th. von & Burgers, J. M. 1934 General aerodynamics theory—perfect fluids. In Aerodynamic Theory Vol. II, Div. E (ed. N. F. Durand), pp. 4853. Durand Reprinting Committee, California Institute of Technology.
Kirchhoff, G. 1869 J. Reine Angew. Math. 70, 289.
Korolev, G. L. 1980 Sci. J. TSAG., I, No. 2, 27.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Lee, C. J. 1988 A study of laminar separation from a thin obstacle. Ph.D. thesis, University of Southern California.
Liebeck, R. H. 1973 J. Aircraft 10, no. 10, 610.
Lighthill, M. J. 1949 Aero. Res. Council R & M 2328.
Lighthill, M. J. 1951 Aero. Q. 3, 193.
Lissaman, P. B. S. 1983 Ann. Rev. Fluid Mech. 15, 223.
Lock, R. C. 1951 Q. J. Mech. Appl. Maths 4, 42.
Melnik, R. E. & Chow, R. 1975 Grumman Res. Rep. Re-510 J.
Messiter, A. F. 1970 SIAM J. Appl. Maths 18, 241.
Messiter, A. F. 1978 Proc. 8th US Natl Appl. Mech. Cong., Los Angeles, CA.
Messiter, A. F. 1983 J. Appl. Mech. 50, 1104.
Morkovin, M. & Paranjape, S. V. 1971 Z. Flugwiss. 9, 328.
Mueller, T. J. 1979 Agardograph 288.
Mueller, T. J. 1985 Proc. Conf. Low Reynolds Number Airfoil Aerodynamics, Univ. Notre Dame, UNDAS-CP 7713123.
Munk, M. M. 1924 NACA Rep. 191.
Neiland, V. Ya. 1969 Izv. Akad. Nauk. SSSR Mekh Zhid Gaza 4.
Peregrine, D. H. 1985 J. Fluid Mech. 157, 493.
Rothmayer, A. P. & Davis, R. T. 1985 In Proc. Symp. on Vortex Dominated Flows (ed. M. Y. Hussaini & M. D. Salas). Springer.
Ruban, A. I. & Sychev, V. V. 1979 Adv. Mech. 2, 57.
Sadovskii, V. S. 1971 Appl. Math. Mech. 35, 729 (transl. from Prikl. Math. Mech. 35, 773).
Schewe, G. 1983 J. Fluid Mech. 133, 265.
Schlichting, H. 1979 Boundary-Layer Theory. McGraw Hill.
Schmitz, F. W. 1942 Aerodynamics Des Flugnodells, Trag-flügel, Messungen I. Berlin-Charlotten-burg 2: C. J. E. Volckmann Nachf. E. Wette.
Sedov, L. I. 1965 Two-Dimensional Problems in Hydrodynamics and Aerodynamics. International Science Publications.
Smith, F. T. 1977 Proc. R. Soc. Lond. A 356, 443
Smith, F. T. 1979 J. Fluid Mech. 92, 171.
Smith, F. T. 1982 IMA J. Appl. Maths 28, 207.
Smith, F. T. 1983 J. Fluid Mech. 131, 219.
Smith, F. T. 1985 J. Fluid Mech. 155, 175.
Smith, F. T. 1986 Ann. Rev. Fluid Mech. 18, 197.
Smith, F. T. & Elliot, J. W. 1985 Proc. R. Soc. Lond. A 401, 1.
Southwell, R. V. & Vaisey, G. 1946 Phil. Trans. R. Soc. Lond. A 240, 177
Stewartson, K. 1958 Q. J. Mech. Appl. Maths 11, 397.
Stewartson, K. 1969 Maithematica 16, 106.
Stewartson, K. 1974 Adv. Appl. Math. 14, 145.
Stewartson, K. 1981 SIAM Rev. 23, 308.
Stewartson, K., Smith, F. T. & Kaup, K. 1982 Stud. Appl. Maths 67, 45.
Sychev, V. V. 1972 Izv. Akad. Nauk. SSSR Mekh. Zhid Gaza 3, 43.
Sychev, V. V. 1987 Asymptotic Theory of Separated Flows. Moscow: Nauka.
Tani, I. 1964 Prog. Aero. Sci. 5, 70.
Thwaites, B. 1960 Aero. Q. J. 1, 245.
Van Dommelen, L. L. & Shen, S. F. 1983 Proc. 2nd Symp. Numerical and Physical Aspects of Aerodynamic Flows, Calif. State Univ., Long Beach, CA, section 2. Springer.
Van Dyke, M. D. 1975 Perturbation Methods in Fluid Mechanics. Parabolic.
Van Dyke, M. D. 1982 An Album of Fluid Motion, pp. 19, 25, 26. Parabolic.
Werlé, H. 1974 ONERA Pub. 156.
Witoszynski, C. & Thompson, M. J. 1934 The theory of single burbling. In Aerodynamic Theory, vol. III, Div. F (ed. W. F. Durand), p. 1. Durand Reprinting Committee, California Institute of Technology.
Wu, T. Y. T. 1972 Ann. Rev. Fluid Mech. 4, 243.