Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T06:07:55.129Z Has data issue: false hasContentIssue false

An active particle in a complex fluid

Published online by Cambridge University Press:  23 June 2017

Charu Datt
Affiliation:
Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
Giovanniantonio Natale
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
Savvas G. Hatzikiriakos
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
Gwynn J. Elfring*
Affiliation:
Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
*
Email address for correspondence: [email protected]

Abstract

In this work, we study active particles with prescribed surface velocities in non-Newtonian fluids. We employ the reciprocal theorem to obtain the velocity of an active spherical particle with an arbitrary axisymmetric slip velocity in an otherwise quiescent second-order fluid. We then determine how the motion of a diffusiophoretic Janus particle is affected by complex fluid rheology, namely viscoelasticity and shear-thinning viscosity, compared to a Newtonian fluid, assuming a fixed slip velocity. We find that a Janus particle may go faster or slower in a viscoelastic fluid, but is always slower in a shear-thinning fluid as compared to a Newtonian fluid.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.Google Scholar
Ardekani, A. M. & Gore, E. 2012 Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid. Phys. Rev. E 85, 056309.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of polymeric liquids. In Fluid Mechanics, vol. 1. Wiley.Google Scholar
Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.Google Scholar
Brady, J. F. 2011 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.Google Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.Google Scholar
Buttinoni, I., Volpe, G., Kümmel, F., Volpe, G. & Bechinger, C. 2012 Active Brownian motion tunable by light. J. Phys.: Condens. Matter 24, 284129.Google Scholar
Christov, I. C. & Jordan, P. M. 2016 Comment on ‘Locomotion of a microorganism in weakly viscoelastic liquids’. Phys. Rev. E 94, 057101.Google ScholarPubMed
Datt, C., Zhu, L., Elfring, G. J. & Pak, O. S. 2015 Squirming through shear-thinning fluids. J. Fluid Mech. 784, R1.CrossRefGoogle Scholar
De Corato, M. & D’Avino, G. 2017 Dynamics of a microorganism in a sheared viscoelastic liquid. Soft Matt. 13, 196211.Google Scholar
De Corato, M., Greco, F. & Maffettone, P. L. 2015 Locomotion of a microorganism in weakly viscoelastic liquids. Phys. Rev. E 92, 053008.Google Scholar
De Corato, M., Greco, F. & Maffettone, P. L. 2016 Reply to Comment on ‘Locomotion of a microorganism in weakly viscoelastic liquids’. Phys. Rev. E 94, 057102.Google Scholar
Delfau, J.-B., Molina, J. & Sano, M. 2016 Collective behavior of strongly confined suspensions of squirmers. Europhys. Lett. 114, 24001.Google Scholar
Elfring, G. J. 2015 A note on the reciprocal theorem for the swimming of simple bodies. Phys. Fluids 27, 023101.Google Scholar
Elfring, G. J. & Goyal, G. 2016 The effect of gait on swimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 234, 814.CrossRefGoogle Scholar
Elfring, G. J. & Lauga, E. 2015 Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems, pp. 283317. Springer.Google Scholar
Elgeti, J., Winkler, R. G. & Gompper, G. 2015 Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601.CrossRefGoogle ScholarPubMed
Gilpin, W., Prakash, V. N. & Prakash, M. 2016 Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae. Nat. Phys. 17452481.Google Scholar
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801.Google Scholar
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9, 126.Google Scholar
Gomez-Solano, J. R., Blokhuis, A. & Bechinger, C. 2016 Dynamics of self-propelled Janus particles in viscoelastic fluids. Phys. Rev. Lett. 116, 138301.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.CrossRefGoogle Scholar
Ishikawa, T., Kajiki, S., Imai, Y. & Omori, T. 2016 Nutrient uptake in a suspension of squirmers. J. Fluid Mech. 789, 481499.Google Scholar
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Jülicher, F. & Prost, J. 2009 Generic theory of colloidal transport. Eur. Phys. J. E 29, 2736.Google Scholar
Kapral, R. 2013 Perspective: nanomotors without moving parts that propel themselves in solution. J. Chem. Phys. 138, 020901.Google Scholar
Khair, A. S., Posluszny, D. E. & Walker, L. M. 2012 Coupling electrokinetics and rheology: electrophoresis in non-Newtonian fluids. Phys. Rev. E 85, 016320.Google Scholar
Lai, S. K., Wang, Y.-Y., Wirtz, D. & Hanes, J. 2009 Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86100.Google Scholar
Lauga, E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104.Google Scholar
Lauga, E. 2009 Life at high Deborah number. Europhys. Lett. 86, 64001.Google Scholar
Lauga, E. 2014 Locomotion in complex fluids: integral theorems. Phys. Fluids 26, 081902.CrossRefGoogle Scholar
Lauga, E. & Michelin, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117, 148001.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.Google Scholar
Leal, L. G. 1975 The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69, 305337.CrossRefGoogle Scholar
Leal, L. G. 1979 The motion of small particles in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 5, 3378.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.CrossRefGoogle Scholar
Li, G. J., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53, 911926.Google Scholar
Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5, 109118.CrossRefGoogle Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 11431189.Google Scholar
Mathijssen, A. J. T. M., Shendruk, T. N., Yeomans, J. M. & Doostmohammadi, A. 2016 Upstream swimming in microbiological flows. Phys. Rev. Lett. 116, 028104.CrossRefGoogle ScholarPubMed
Merrill, E. W. 1969 Rheology of blood. Phys. Rev. 49, 863888.Google Scholar
Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Pèclet numbers. Phys. Fluids 23, 101901.Google Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Pèclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25, 061701.CrossRefGoogle Scholar
Montenegro-Johnson, T. D., Smith, D. J. & Loghin, D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized stokes. Phys. Fluids 25, 081903.Google Scholar
Morozov, A. & Spagnolie, S. E. 2015 Introduction to complex fluids. In Complex Fluids in Biological Systems, pp. 352. Springer.Google Scholar
Oppenheimer, N., Navardi, S. & Stone, H. A. 2016 Motion of a hot particle in viscous fluids. Phys. Rev. Fluids 1, 014001.CrossRefGoogle Scholar
Ozin, G. A., Manners, I., Fournier-Bidoz, S. & Arsenault, A. 2005 Dream nanomachines. Adv. Mater. 17, 30113018.Google Scholar
Pak, O. S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88, 128.Google Scholar
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. 2013 Living crystals of light-activated colloidal surfers. Science 339, 936940.Google Scholar
Patteson, A. E., Gopinath, A. & Arratia, P. E. 2016 Active colloids in complex fluids. Curr. Opin. Colloid Interface Sci. 21, 8696.CrossRefGoogle Scholar
Pedley, T. J. 2016 Spherical squirmers: models for swimming micro-organisms. IMA J. Appl. Maths 81, 488521.Google Scholar
Pedley, T. J., Brumley, D. R. & Goldstein, R. E. 2016 Squirmers with swirl: a model for Volvox swimming. J. Fluid Mech. 798, 165186.Google Scholar
Popescu, M. N., Uspal, W. E. & Dietrich, S. 2016 Self-diffusiophoresis of chemically active colloids. Eur. Phys. J. Spec. Topics 225, 21892206.Google Scholar
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.CrossRefGoogle Scholar
Schweitzer, F. & Farmer, J. D. 2007 Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Springer.Google Scholar
Sleigh, M. A. 1962 The Biology of Cilia and Flagella. Pergamon.CrossRefGoogle Scholar
Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77, 41024104.Google Scholar
Thutupalli, S., Seemann, R. & Herminghaus, S. 2011 Swarming behavior of simple model squirmers. New J. Phys. 13, 073021.Google Scholar
Walther, A. & Müller, A. H. E. 2013 Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 51945261.CrossRefGoogle ScholarPubMed
Zhu, L., Lauga, E. & Brandt, L. 2012 Self-propulsion in viscoelastic fluids: pushers versus pullers. Phys. Fluids 24, 051902.Google Scholar
Zöttl, A. & Stark, H. 2014 Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112, 118101.Google Scholar