Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T13:47:27.831Z Has data issue: false hasContentIssue false

Aerothermodynamics of a sphere in a monatomic gas based on ab initio interatomic potentials over a wide range of gas rarefaction: transonic, supersonic and hypersonic flows

Published online by Cambridge University Press:  18 May 2022

Felix Sharipov*
Affiliation:
Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba 81531-980, Brazil
Alexey N. Volkov
Affiliation:
Department of Mechanical Engineering, University of Alabama, H.M. Comer Hall, 7th Avenue, Tuscaloosa, AL 35487, USA
*
Email address for correspondence: [email protected]

Abstract

Aerothermodynamic characteristics of a sphere such as drag and energy transfer coefficients are calculated for Mach numbers varying from 1 to 10 over a wide range of the gas rarefaction degree spanning the free molecular, transitional and near hydrodynamic flow regimes. The effects of major factors determining the gas flow are studied using the direct simulation Monte Carlo method. To reveal the effect of gas species, the simulations are performed based on ab initio interatomic potentials for helium, neon, argon and krypton, as well as based on the hard sphere model. The impact of the accommodation coefficients is evaluated by applying the Cercignani–Lampis model of gas–surface interaction. The calculations are carried out for several values of the free stream and sphere temperatures. It is found that the effects of gas species on the drag and energy transfer coefficients are approximately 3 % and 6 %, respectively. The accommodation coefficients in the Cercignani–Lampis model strongly affect all aerothermodynamic characteristics. The drag and energy transfer coefficients calculated for different accommodation coefficients vary within 30 % and 200 %, respectively. It is found that the variation of the tangential momentum and normal energy accommodation coefficients can induce an increase of the drag coefficient compared to the case of diffuse gas–surface interaction. In hypersonic flows, the drag coefficient varies within 30 % when the sphere temperature varies from the free stream temperature to the stagnation temperature. The drag and energy transfer coefficients are found to be non-monotonic functions of the free stream temperature.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrus, V.E., Sharipov, F. & Sofonea, V. 2020 Comparison of the Shakhov and ellipsoidal models for the Boltzmann equation and DSMC for ab initio-based particle interactions. Comput. Fluids 211, 104637.CrossRefGoogle Scholar
Ashley, H.J. 1949 Applications of the theory of free molecule flow to aeronautics. J. Aeronaut. Sci. 16, 95104.CrossRefGoogle Scholar
Avleeva, V.K. 1970 Experimental study of heat transfer of a sphere and a flat plate in supersonic rarefied gas flow. Fluid Dyn. 5, 339343.CrossRefGoogle Scholar
Bailey, A.B. 1974 Sphere drag coefficient for subsonic speeds in continuum and free-molecule. J. Fluid Mech. 65, 401410.CrossRefGoogle Scholar
Bailey, A.B. & Hiatt, J. 1971 Free-flight measurements of sphere drag at subsonic, transonic, supersonic, and hypersonic speeds for continuum, transition, and near-free-molecular flow conditions. Tech. Rep. AEDC-TR-70-291. Arnold Engineering Development Center.Google Scholar
Bailey, A.B. & Hiatt, J. 1972 Sphere drag coefficients for a broad range of Mach and Reynolds numbers. AIAA J. 10 (11), 14361440.CrossRefGoogle Scholar
Batchelor, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Berg, R.F. & Burton, W.C. 2013 Noble gas viscosities at 25 $^{\circ }$C. Mol. Phys. 111 (2), 195199.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.Google Scholar
Bird, G.A. 2013 The DSMC Method.Google Scholar
Carlson, D.J. & Hoglund, R.F. 1964 Particle drag and heat transfer in rocket nozzles. AIAA J. 2, 19801984.CrossRefGoogle Scholar
Cencek, W., Przybytek, M., Komasa, J., Mehl, J.B., Jeziorski, B. & Szalewicz, K. 2012 Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium. J. Chem. Phys. 136 (22), 224303.CrossRefGoogle ScholarPubMed
Cercignani, C. 1972 Scattering kernels for gas–surface interactions. Transp. Theory Stat. Phys. 2 (1), 2753.CrossRefGoogle Scholar
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Scottish Academic Press.Google Scholar
Cercignani, C. & Lampis, M. 1971 Kinetic model for gas–surface interaction. Transp. Theory Stat. Phys. 1, 101114.CrossRefGoogle Scholar
Cercignani, C., Pagani, C.D. & Bassanini, P. 1968 Flow of a rarefied gas past an axisymmetrical body. II. Case of a sphere. Phys. Fluids 11 (7), 13991403.CrossRefGoogle Scholar
Chernyak, V.G. & Sograbi, T.V. 2019 The role of molecule–surface interaction in thermophoresis of an aerosol particle. J. Aerosol Sci. 128, 6271.CrossRefGoogle Scholar
Chernyak, V.G. & Sograbi, T.V. 2020 The role of molecule–surface interaction in diffusiophoresis of a fine aerosol particle. J. Aerosol Sci. 144, 105532.CrossRefGoogle Scholar
Ching, E., Barnhardt, M. & Ihme, M. 2021 Sensitivity of hypersonic dusty flows to physical modeling of the particle phase. J. Spacecr. Rockets 58 (3), 653667.CrossRefGoogle Scholar
Crowe, C.T. 1967 Drag coefficient of particles in a rocket nozzle. AIAA J. 10, 10211022.CrossRefGoogle Scholar
Crowe, C.T., Sommerfeld, M. & Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles. CRC.Google Scholar
Dias, F.C. & Sharipov, F. 2021 Shock waves structure propagating through heavy noble gases. Temperature dependence. Shock Waves 31 (6), 609617.CrossRefGoogle Scholar
Dogra, V.K., Moss, J.N., Wilmoth, R.G. & Price, J.M. 1994 Hypersonic rarefied flow past spheres including wake structure. J. Spacecr. Rockets 31 (5), 713718.CrossRefGoogle Scholar
Dogra, V.K., Wilmoth, R.G. & Moss, J.N. 1992 Aerothermodynamics of a 1.6-meter-diameter sphere in hypersonic rarefied flow. AIAA J. 30 (7), 17891794.CrossRefGoogle Scholar
Drake, R.M. & Backer, G.H. 1952 Heat transfer from spheres to rarefied gas in supersonic flow. Trans. ASME 74, 12411249.Google Scholar
Ferziger, J.H. & Kaper, H.G. 1972 Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company.Google Scholar
Hellmann, R., Bich, E. & Vogel, E. 2008 Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon–neon interatomic potential and rovibrational spectra. Mol. Phys. 106 (1), 133140.CrossRefGoogle Scholar
Henderson, C.B. 1976 Drag coefficients of spheres in continuum and rarefied flows. AIAA J. 14 (6), 707708.CrossRefGoogle Scholar
Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B. 1954 The Molecular Theory of Gases and Liquids. Wiley.Google Scholar
Jäger, B., Hellmann, R., Bich, E. & Vogel, E. 2016 State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas. J. Chem. Phys. 144, 114304.CrossRefGoogle ScholarPubMed
Kalempa, D. & Sharipov, F. 2020 Drag and thermophoresis on a sphere in a rarefied gas based on the Cercignani–Lampis scattering model of gas–surface interaction. J. Fluid Mech. 900, A37.CrossRefGoogle Scholar
Kalempa, D. & Sharipov, F. 2021 Radiometric force on a sphere in a rarefied gas based on the Cercignani–Lampis model of gas–surface interaction. Phys. Fluids 33 (7), 073602.CrossRefGoogle Scholar
Kavanau, L.L. 1955 Heat transfer from spheres to a rarefied gas in subsonic flow. Trans. ASME 77, 617623.Google Scholar
Kingslow, M. & Potter, J.L. 1963 Drag of spheres in rarefied hypervelocity flow. AIAA J. 1, 24672473.CrossRefGoogle Scholar
Kogan, M.N. 1969 Rarefied Gas Dynamics. Plenum.CrossRefGoogle Scholar
Koshmarov, Y.A. & Svirshevskii, S.B. 1972 Heat transfer from a sphere in the intermediate dynamics region of a rarefied gas (in Russian). Izv. Akad. Nauk SSSR. Mekhan. Zhidk. Gaza, No. 2, 170–172 (translation in Fluid Dyn. 7, 343346).CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1989 Fluid Mechanics. Pergamon.Google Scholar
Lea, K.C. & Loyalka, S.K. 1982 Motion of a sphere in a rarefied gas. Phys. Fluids 25 (9), 15501557.CrossRefGoogle Scholar
Lofthouse, A.J., Boyd, I.D. & Wright, M.J. 2007 Effects of continuum breakdown on hypersonic aerothermodynamics. Phys. Fluids 19 (2), 027105.CrossRefGoogle Scholar
Lord, R.G. 1991 Some extensions to the Cercignani–Lampis gas–surface scattering kernel. Phys. Fluids A 3 (4), 706710.CrossRefGoogle Scholar
Loth, E. 2008 Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46 (9), 22192228.CrossRefGoogle Scholar
Loth, E., Tyler Daspit, J., Jeong, M., Nagata, T. & Nonomura, T. 2021 Supersonic and hypersonic drag coefficients for a sphere. AIAA J. 59 (8), 32613274.CrossRefGoogle Scholar
Loyalka, S.K. 1992 Motion of a sphere in a gas: numerical solution of the linearized Boltzmann equation. Phys. Fluids 4 (5), 10491056.CrossRefGoogle Scholar
Meija, J., et al. 2016 Isotopic composition of the elements 2013 (IUPAC technical report). Pure Appl. Chem. 88 (3), 293306.CrossRefGoogle Scholar
Melosh, H.J. & Goldin, T.J. 2008 Heat and drag coefficients for reentry of impact ejecta. In Lunar and Planetary Institute Science Conference Abstracts (ed. S.J. Mackwell & E.K. Stansbery), vol. 39, p. 2457. Lunar and Planetary Institute.Google Scholar
Nagata, T., Noguchi, A., Nonomura, T., Ohtani, K. & Asai, K. 2020 Experimental investigation of transonic and supersonic flow over a sphere for Reynolds numbers of 10$^{3}$–10$^{5}$ by free-flight tests with schlieren visualization. Shock Waves 30, 139151.CrossRefGoogle Scholar
Nagata, T., Nonomura, T., Takahashi, S. & Fukuda, S. 2016 Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation. Phys. Fluids 28, 056101.CrossRefGoogle Scholar
Nagata, T., Nonomura, T., Takahashi, S., Mizuno, Y. & Fukuda, S. 2018 Direct numerical simulation of flow around a heated/cooled isolated sphere up to a Reynolds number of 300 under subsonic to supersonic conditions. Intl J. Heat Mass Transfer 120, 284299.CrossRefGoogle Scholar
Nelson, H.F. & Fields, J.C. 1996 Heat transfer in two-phase solid-rocket plumes. J. Spacecr. Rockets 33, 494500.CrossRefGoogle Scholar
Ozawa, T., Suzuki, T., Takayanagi, H. & Fujita, K. 2011 Investigation of Martian-dust drag and heat transfer for Mars sample return mission. J. Thermophys. Heat Transfer 25 (3), 341353.CrossRefGoogle Scholar
Papadopoulos, P., Tauber, M.E. & Chang, I.-D. 1993 Heatshield erosion in a dusty Martian atmosphere. J. Spacecr. Rockets 30, 140151.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2010 Improved drag correlation for spheres and application to shock-tube experiments. AIAA J. 48 (6), 12731276.CrossRefGoogle Scholar
Patkowski, K. & Szalewicz, K. 2010 Argon pair potential at basis set and excitation limits. J. Chem. Phys. 133, 094304.CrossRefGoogle ScholarPubMed
Petrov, V.A., Ranjbar, O.A., Zhilyaev, P.A. & Volkov, A.N. 2020 Kinetic simulations of laser-induced plume expansion from a copper target into a vacuum or argon background gas based on ab initio calculation of Cu–Cu, Ar–Ar, and Ar–Cu interactions. Phys. Fluids 32, 102010.CrossRefGoogle Scholar
Porodnov, B.T., Kulev, A.N. & Tukhvetov, F.T. 1978 Thermal transpiration in a circular capillary with a small temperature difference. J. Fluid Mech. 88 (4), 609622.CrossRefGoogle Scholar
Porodnov, B.T., Suetin, P.E., Borisov, S.F. & Akinshin, V.D. 1974 Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech. 64 (3), 417437.CrossRefGoogle Scholar
Przybytek, M., Cencek, W., Komasa, J., Łach, G., Jeziorski, B. & Szalewicz, K. 2010 Relativistic and quantum electrodynamics effects in the helium pair potential. Phys. Rev. Lett. 104, 183003 (erratum in Phys. Rev. Lett. 108, 129902 (2012)).CrossRefGoogle ScholarPubMed
Riahia, H., Meldia, M., Favier, J., Serre, E. & Goncalves, E. 2018 A pressure-corrected immersed boundary method for the numerical simulation of compressible flows. J. Comput. Phys. 374, 361383.CrossRefGoogle Scholar
Sansica, A., Robinet, J.-C., Alizard, F. & Goncalves, E. 2018 Three-dimensional instability of a flow past a sphere: Mach evolution of the regular and Hopf bifurcations. J. Fluid Mech. 855, 10881115.CrossRefGoogle Scholar
Sauer, F.M. 1951 Convective heat transfer from spheres in a free molecule flow. J. Aeronaut. Sci. 18, 353354.CrossRefGoogle Scholar
Schaaf, S.A. & Chambre, P.L. 1961 Flow of Rarefied Gases. Princeton University Press.Google Scholar
Semyonov, Y.G., Borisov, S.F. & Suetin, P.E. 1984 Investigation of heat transfer in rarefied gases over a wide range of Knudsen numbers. Intl J. Heat Mass Transfer 27 (10), 17891799.CrossRefGoogle Scholar
Sharipov, F. 2003 a Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. B/Fluids 22, 133143.CrossRefGoogle Scholar
Sharipov, F. 2003 b Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. B/Fluids 22, 145154.CrossRefGoogle Scholar
Sharipov, F. 2012 Benchmark problems in rarefied gas dynamics. Vacuum 86 SI (11), 16971700.CrossRefGoogle Scholar
Sharipov, F. 2016 Rarefied Gas Dynamics. Fundamentals for Research and Practice. Wiley-VCH.CrossRefGoogle Scholar
Sharipov, F. 2017 Ab initio simulation of gaseous mixture flow through an orifice. Vacuum 143, 106118.CrossRefGoogle Scholar
Sharipov, F. 2018 a Influence of quantum intermolecular interaction on internal flows of rarefied gases. Vacuum 156, 146153.CrossRefGoogle Scholar
Sharipov, F. 2018 b Modelling of transport phenomena in gases based on quantum scattering. Physica A 508, 797805.CrossRefGoogle Scholar
Sharipov, F. & Benites, V.J. 2017 Transport coefficients of helium–neon mixtures at low density computed from ab initio potentials. J. Chem. Phys. 147, 224302.CrossRefGoogle ScholarPubMed
Sharipov, F. & Benites, V.J. 2019 Transport coefficients of argon and its mixtures with helium and neon at low density based ab initio potentials. Fluid Phase Equilib. 498, 2332.CrossRefGoogle Scholar
Sharipov, F. & Benites, V.J. 2020 Transport coefficients of multi-component mixtures of noble gases based on ab initio potentials, viscosity and thermal conductivity. Phys. Fluids 32, 077104.CrossRefGoogle Scholar
Sharipov, F. & Benites, V.J. 2021 Transport coefficients of isotopic mixtures of noble gases based on ab initio potentials. Phys. Chem. Chem. Phys. 23, 1666416674.CrossRefGoogle ScholarPubMed
Sharipov, F. & Bertoldo, G. 2006 Heat transfer through a rarefied gas confined between two coaxial cylinders with high radius ratio. J. Vac. Sci. Technol. A 24 (6), 20872093.CrossRefGoogle Scholar
Sharipov, F. & Dias, C.F. 2017 Ab initio simulation of planar shock waves. Comput. Fluids 150, 115122.CrossRefGoogle Scholar
Sharipov, F. & Dias, C.F. 2019 Temperature dependence of shock wave structure in helium and neon. Phys. Fluids 31, 037109.CrossRefGoogle Scholar
Sharipov, F. & Moldover, M. 2016 Energy accommodation coefficient extracted from acoustic resonator experiments. J. Vac. Sci. Technol. A 34 (6), 061604.CrossRefGoogle ScholarPubMed
Sharipov, F. & Strapasson, J.L. 2012 a Direct simulation Monte Carlo method for an arbitrary intermolecular potential. Phys. Fluids 24 (1), 011703.CrossRefGoogle Scholar
Sharipov, F. & Strapasson, J.L. 2012 b Ab initio simulation of transport phenomena in rarefied gases. Phys. Rev. E 86 (3), 031130.CrossRefGoogle ScholarPubMed
Sharipov, F. & Strapasson, J.L. 2013 Benchmark problems for mixtures of rarefied gases. I. Couette flow. Phys. Fluids 25, 027101.CrossRefGoogle Scholar
Storch, J. 2002 Aerodynamic disturbances on spacecraft in free-molecular flow. Tech. Rep. TR-2003(3397)-1. Space and Missile Systems Center, U.S. Air Force Space Command (Los Angeles AFB, CA).Google Scholar
Strapasson, J.L. & Sharipov, F. 2014 Ab initio simulation of heat transfer through a mixture of rarefied gases. Intl J. Heat Mass Transfer 71, 9197.CrossRefGoogle Scholar
Taguchi, S. 2015 Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers. J. Fluid Mech. 774, 363394.CrossRefGoogle Scholar
Takata, S., Sone, Y. & Aoki, K. 1993 Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5 (3), 716737.CrossRefGoogle Scholar
Trott, W.M., Castaneda, J.N., Torczynski, J.R., Gallis, M.A. & Rader, D.J. 2011 An experimental assembly for precise measurement of thermal accommodation coefficients. Rev. Sci. Instrum. 82 (3), 035120.CrossRefGoogle ScholarPubMed
Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V. & Yakovleva, L.V. 2001 Heat exchange on the front surface of a blunt body in a high-speed flow containing low-inertia particles (in Russian). Izv. Akad. Nauk SSSR. Mekhan. Zhidk. Gaza, vol. 76, no. 6, pp. 29–37 (translation in J. Engng Phys. Thermophys. 74 (6), 13991411).CrossRefGoogle Scholar
Vogenitz, F.W., Bird, G.A., Broadwell, J.E. & Rungaldi, H. 1968 Theoretical and experimental study of rarefied supersonic flows about several simple shapes. AIAA J. 6 (12), 23882394.CrossRefGoogle Scholar
Volkov, A.N. 2009 Aerodynamic coefficients of a spinning sphere in rarefied-gas flow (in Russian). Izv. Akad. Nauk SSSR. Mekhan. Zhidk. Gaza, vol. 44, no. 1, pp. 167–187 (translation in Fluid Dyn. 44, 141157).CrossRefGoogle Scholar
Volkov, A.N. 2011 Transitional flow of a rarefied gas over a spinning sphere. J. Fluid Mech. 683, 320345.CrossRefGoogle Scholar
Volkov, A.N. & Sharipov, F. 2017 Flow of a monatomic rarefied gas over a circular cylinder: calculations based on the ab initio potential method. Intl J. Heat Mass Transfer 114, 4761.CrossRefGoogle Scholar
Volkov, A.N., Tsirkunov, Y.M. & Oesterlé, B. 2005 Numerical simulation of a supersonic gas–solid flow over a blunt body: the role of inter-particle collisions and two-way coupling effects. Intl J. Multiphase Flow 31, 12441275.CrossRefGoogle Scholar
Wagner, W. 1992 A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66, 10111044.CrossRefGoogle Scholar
Walker, A., Mehta, P. & Koller, J. 2014 Drag coefficient model using the Cercignani–Lampis–Lord gas–surface interaction model. J. Spacecr. Rockets 51, 15441563.CrossRefGoogle Scholar
Walsh, M.J. 1977 Comment on ‘Drag coefficient of spheres in continuum and rarefied flows’. AIAA J. 15 (6), 893894.CrossRefGoogle Scholar
Wang, M., Audi, G., Kondev, F.G., Huang, W.J., Naimi, S. & Xu, X. 2017 The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41 (3), 030003.CrossRefGoogle Scholar
Wang, X., Zhang, Z., Han, F., Zhang, W. & Zhang, S. 2022 Ab initio simulation of rarefied flows of gaseous mixtures in the system of microbeams with different temperatures. Intl Commun. Heat Mass Transfer 131, 105872.CrossRefGoogle Scholar
Wegener, P.P. & Ashkenas, H. 1961 Wind tunnel measurements of sphere drag at supersonic speeds and low Reynolds numbers. J. Fluid Mech. 10 (4), 550560.CrossRefGoogle Scholar
Zhu, L., Wu, L., Zhang, Y. & Sharipov, F. 2019 Ab initio calculation of rarefied flows of helium–neon mixture: classical vs quantum scatterings. Intl J. Heat Mass Transfer 145, 118765.CrossRefGoogle Scholar
Supplementary material: File

Sharipov and Volkov supplementary material

Sharipov and Volkov supplementary material

Download Sharipov and Volkov supplementary material(File)
File 2.3 MB