Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T15:03:25.244Z Has data issue: false hasContentIssue false

Acoustic–convective mode conversion in an aerofoil cascade

Published online by Cambridge University Press:  14 February 2011

P. PALIES*
Affiliation:
EM2C Laboratory, École Centrale Paris and CNRS, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
D. DUROX
Affiliation:
EM2C Laboratory, École Centrale Paris and CNRS, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
T. SCHULLER
Affiliation:
EM2C Laboratory, École Centrale Paris and CNRS, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
S. CANDEL
Affiliation:
EM2C Laboratory, École Centrale Paris and CNRS, Grande Voie des Vignes, 92295 Châtenay-Malabry, France Institut Universitaire de France, 103 Boulevard Saint-Michel, 75 005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

When an acoustic wave impinges on an aerofoil cascade, a convective vorticity mode is generated giving rise to transverse velocity perturbations. This mode conversion process is investigated to explain the flow dynamics observed when swirlers are submitted to incident acoustic disturbances. The phenomenon is first studied in the case of a two-dimensional aerofoil cascade using a model derived from an actuator disk theory. The model is simplified to deal with low-Mach-number flows. The velocity field on the downstream side of the cascade features two components, an axial perturbation associated with the transmitted acoustic wave and a transverse disturbance corresponding to the vorticity wave generated at the cascade trailing edge. The model provides the amplitude of both components and defines their phase shift. Numerical simulations are carried out in a second stage to validate this model in the case of a cascade operating at a low Reynolds number Rec = 2700 based on the chord length. Space–time diagrams of velocity perturbations deduced from these simulations are used to retrieve the two types of modes. Experiments are then carried out in the case of an axial swirler placed in a cylindrical duct and submitted to plane acoustic waves emitted on the upstream side of the swirler. The amplitude and phase of the two velocity components measured in the axial and azimuthal directions are found to be in good agreement with theoretical estimates and with numerical calculations. This analysis is motivated by combustion dynamics observed in flames stabilized by aerodynamic swirlers in continuous combustors.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baillot, F., Durox, D. & Prudhomme, R. 1992 Experimental and theoretical study of a premixed vibrating flame. Combust. Flame 88 (2), 149168.CrossRefGoogle Scholar
Bake, F., Richter, C., Muhlbauer, B., Kings, N., Rohle, I., Thiele, F. & Noll, B. 2009 The entropy wave generator (EWG): a reference case on entropy noise. J. Sound Vib. 326, 574598.CrossRefGoogle Scholar
Birbaud, A. L., Durox, D. & Candel, S. 2006 Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations. Combust. Flame 146 (3), 541552.CrossRefGoogle Scholar
Birbaud, A. L., Durox, D., Ducruix, S. & Candel, S. 2007 Dynamics of free jets submitted to upstream acoustic modulations. Phys. Fluids 19 (1), 013602.CrossRefGoogle Scholar
Bourhela, A. & Baillot, F. 1998 Appearance and stability of a laminar conical premixed flame subjected to an acoustic perturbation. Combust. Flame 114 (3), 303318.CrossRefGoogle Scholar
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82 (1), 5165.CrossRefGoogle Scholar
Candel, S. M. 1972 Analytical studies of some acoustical problems of jet engines. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.CrossRefGoogle Scholar
Cumpsty, N. A. 1979 Jet engines combustion noise : pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition. J. Sound Vib. 66 (4), 527544.CrossRefGoogle Scholar
Cumpsty, N. A. & Marble, F. E. 1977 a The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise. Proc. R. Soc. Lond. Ser. A357, 323344.Google Scholar
Cumpsty, N. A. & Marble, F. E. 1977 b Core noise gas turbine exhausts. J. Sound Vib. 54 (2), 297309.CrossRefGoogle Scholar
De Soete, G. 1964 Etude des flammes vibrantes – application a la combustion turbulente. Revue de l'Institut Francais du Pétrole et Annales du Combustible Liquide XIX (6), 766785.Google Scholar
Dotson, K. W., Koshigoe, S. & Pace, K. K. 1997 Vortex shedding in a large solid rocket motor without inhibitors at the segmented interfaces. J. Propul. Power 13, 197206.CrossRefGoogle Scholar
Ffwocs-Williams, J. E. & Howe, M. S. 1975 The generation of sound by density inhomogeneities in low Mach number nozzle flows. J. Fluid Mech. 70, 605622.CrossRefGoogle Scholar
Glegg, S. A. L. 1999 The response of a swept blade row to a three-dimensional gust. J. Sound Vib. 227 (1), 2964.CrossRefGoogle Scholar
Greitzer, E. M., Tan, C. S. & Graf, M. B. 2004 Internal Flow – Concepts and Applications. Cambridge University Press.CrossRefGoogle Scholar
Hirsch, C., Fanaca, D., Reddy, P., Polifke, W. & Sattelmayer, T. 2005 Influence of the swirler design on the flame transfer function of premixed flames. In ASME Paper GT2005-68195, ASME Turbo Expo 2005, Reno-Tahoe, NV, ASME.Google Scholar
Horlock, J. H. 1978 Actuator Disk Theory – Discontinuities in Thermo-Fluid Dynamics. McGraw-Hill International Book Co.Google Scholar
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293384.CrossRefGoogle Scholar
Kaji, S. & Okazaki, T. 1970 Propagation of sound waves through a blade row. Part I. Analysis based on semi-actuator disk theory. J. Sound Vib. 11 (3), 339353.CrossRefGoogle Scholar
Koch, W. 1971 On the transmission of sound waves through a blade row. J. Sound Vib. 18 (1), 111128.CrossRefGoogle Scholar
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Engng Gas Turbines Power 132 (061053).CrossRefGoogle Scholar
Kornilov, V. N., Schreel, K. R. A. M. & de Goey, L. P. H. 2007 Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proc. Combust. Inst. 31, 12391246.CrossRefGoogle Scholar
Leyko, M., Nicoud, F. & Poinsot, T. 2009 Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA J. 47 (11), 27092716.CrossRefGoogle Scholar
Marble, F. E. & Candel, S. M. 1977 Acoustic disturbance from gas nonuniformities convected through a nozzle. J. Sound Vib. 55, 225243.CrossRefGoogle Scholar
Morfey, C. L. 1973 a Amplification of aerodynamic noise by convected flow inhomogeneities. J. Sound Vib. 31 (4), 391397.CrossRefGoogle Scholar
Morfey, C. L. 1973 b Rotating blades and aerodynamic sound. J. Sound Vib. 28 (3), 587617.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2009 Mode conversion in acoustically modulated confined jets. AIAA J. 47 (9), 20532062.CrossRefGoogle Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2010 a The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157 (9), 16981717.CrossRefGoogle Scholar
Palies, P., Durox, D., Schuller, T., Morenton, P. & Candel, S. 2009 Dynamics of premixed confined swirling flames. Comptes Rendus Mecanique 337 (6–7), 395405.CrossRefGoogle Scholar
Palies, P., Schuller, T., Durox, D., Gicquel, L. Y. M. & Candel, S. 2011 Acoustically perturbed turbulent premixed swirling flames. Phys. Fluids (in press).CrossRefGoogle Scholar
Paynter, G. C. 1997 Response of two dimensional cascade to an upstream disturbance. AIAA J. 35 (3), 434440.CrossRefGoogle Scholar
Peake, N. & Kerschen, E. J. 1997 Influence of mean loading on noise generated by the interaction of gusts with a flat-plate cascade: upstream radiation. J. Fluid Mech. 347, 315346.CrossRefGoogle Scholar
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillation of impinging free shear layers. Annu. Rev. Fluid Mech. 11, 6794.CrossRefGoogle Scholar
Rossiter, J. E. 1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Aeronautical Research Council, Ministry of Aviation, London.Google Scholar
Sajben, M. & Said, H. 2001 Acoustic-wave/blade-row interactions establish boundary conditions for unsteady inlet flows. J. Propul. Power 17 (5), 10901099.CrossRefGoogle Scholar
Schonfeld, T. & Rudgyard, M. 1999 Steady and unsteady flows simulations using the hybrid flow solver avbp. AIAA J. 37 (11), 13781385.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2003 A unified model for the prediction of laminar flame transfer functions: comparisons between conical and v-flame dynamics. Combust. Flame 134 (1–2), 2134.CrossRefGoogle Scholar
Selle, L., Benoit, L., Poinsot, T., Nicoud, F. & Krebs, W. 2006 Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combust. Flame 145, 194205.CrossRefGoogle Scholar
Shanbhogue, S. J., Shin, D. H., Santosh, H., Plaks, D. & Lieuwen, T. 2009 Flame sheet dynamics of bluff body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32 (2), 17861893.CrossRefGoogle Scholar
Staffelbach, G., Gicquel, L. Y. M., Boudier, G. & Poinsot, T. 2009 Large eddy simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32, 29092916.CrossRefGoogle Scholar
Wang, S. & Yang, V. 2005 Unsteady flow evolution in swirl injector with radial entry. Part II. External excitations. Phys. Fluids 17 (045107).CrossRefGoogle Scholar