Article contents
Absolute and convective instability of a relaxational plane liquid jet
Published online by Cambridge University Press: 08 October 2003
Abstract
The stability of a plane relaxational liquid jet has been studied theoretically and experimentally through linear stability analysis and flow visualizations. The relaxational liquid jet is obtained by the outflow of a liquid from a plane channel with an upstream fully developed Poiseuille flow into an ambient stagnant gas. Linear spatial stability calculations show that there are five convectively unstable modes, three sinuous and two dilatational. The spatial stability calculations are compared to experimental results for wavenumber variation and the growth of waves found in the visualizations. These variations have been quantified with a wavelet transform and through a comparison with the spatial stability results the type of mode observed in the visualizations has been determined. For this type of mode the calculated wavenumber variation is in good agreement with the experimental results. Also, in the experiments the breakup of the jet has been observed when the Reynolds number reaches a certain value, and as the Reynolds number increases this breakup moves closer to the channel exit. This upstream movement of the breakup can be explained by the linear stability results. Finally the relaxational liquid jet is shown to be absolutely unstable for a certain parameter region. Close to the nozzle both a sinuous mode and a dilatational mode are shown to be absolutely unstable. As the jet profile relaxes to uniform, the sinuous mode is shown to be the only unstable mode. This occurs for Weber numbers ${\it We} < 1$, which is in agreement with the theory for liquid jets with uniform velocity profile. The frequency selection for the observed waves is believed to be related to the region of absolute instability located closest to the channel exit.
- Type
- Papers
- Information
- Copyright
- © 2003 Cambridge University Press
- 27
- Cited by