Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T07:17:27.337Z Has data issue: false hasContentIssue false

Absolute and convective instability of a liquid sheet

Published online by Cambridge University Press:  26 April 2006

S. P. Lin
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676, USA
Z. W. Lian
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676, USA
B. J. Creighton
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676, USA

Abstract

The linear stability of a viscous liquid sheet in the presence of ambient gas is investigated. It is shown that there are two independent modes of instability, sinuous and varicose. The large-time asymptotic amplitude of sinuous disturbances is found to be bounded but non-vanishing for all calculated values of Reynolds numbers and the gas-to-liquid density ratios when the Weber number is greater than one half. The Weber number We is defined as the ratio of the surface tension force to the inertia force per unit area of the gas–liquid interface. When We is smaller than one half, the sinuous mode is stable if the gas-to-liquid density ratio is zero, otherwise it is convectively unstable. The varicose mode is always convectively unstable unless the density ratio, Q, is zero. Then it is asymptotically stable. The spatial growth rate of the varicose mode is smaller than that of the sinuous mode for the same flow parameters. The wavelength of the most amplified waves in both modes is found to scale with the product of the sheet thickness and Q/We. It is shown, by use of the energy equation, that the mechanism of instability is a capillary rupture when We [ges ] 0.5, and the convective instability is due to the interfacial pressure fluctuation when We < 0.5.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akylas, T. R. & Benney, D. J., 1980 Stud. Appl. Maths 63, 209.
Antoniandes, M. G. & Lin, S. P., 1980 J. Colloid Interface Sci. 77, 583.
Bers, A.: 1983 Handbook of Plasma Physics, vol. 1, pp. 452516. North-Holland.
Briggs, R. J.: 1964 Electron Stream Interaction with Plasmas. MIT Press.
Brown, D. R.: 1961 J. Fluid Mech. 10, 297.
Clark, C. J. & Dombrowski, N., 1972 Proc. R. Soc. Lond. A 329, 467.
Crapper, G. D., Dombrowski, N., Jepson, W. P. & Pyott, G. A. D. 1973 J. Fluid Mech. 57, 671.
Crapper, G. D., Dombrowski, N. & Pyott, G. A. D. 1975 Proc. R. Soc. Lond. A 342, 209.
Creighton, N.: 1989 Energy balance in breakup of liquid jets and curtains. M. S. thesis, Clarkson University.
Leib, S. J. & Goldstein, M. E., 1986a J. Fluid Mech. 168, 479.
Leib, S. J. & Goldstein, M. E., 1986b Phys. Fluids 29, 952.
Kelly, R. E., Goussis, D. A., Lin, S. P. & Hsu, F. K., 1989 Phys. Fluids A 1, 819.
Kistler, S. F. & Scriven, L. E., 1984 Intl J. Numer. Meth. Fluids 4, 207.
Lin, S. P.: 1981 J. Fluid Mech. 104, 111.
Lin, S. P. & Lian, Z. W., 1989 Phys. Fluids A 1, 490.
Lin, S. P. & Roberts, G., 1981 J. Fluid Mech. 112, 443.
Muller, D. E.: 1956 Mathematical Tables and Aid to Computation, vol. 10, pp. 208230.
Rombers, S.: 1984 Problem Solving Software System for Mathematical and Statistical FORTRAN Programming, I & II. IMSL.Google Scholar
Taylor, G. I.: 1959a Proc. R. Soc. Lond. A 253, 289.
Taylor, G. I.: 1959b Proc. R. Soc. Lond. A 252, 296.
Taylor, G. I.: 1959c Proc. R. Soc. Lond. A 253, 313.
Taylor, G. I.: 1963 The Scientific Papers of G. I. Taylor, vol. 3, No. 25. Cambridge University Press.
Tomotika, S.: 1934 Proc. R. Soc. Lond. A 146, 501.
Weihs, D.: 1978 J. Fluid Mech. 87, 289.