Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T19:52:58.405Z Has data issue: false hasContentIssue false

Ablative Rayleigh–Taylor instability with strong temperature dependence of the thermal conductivity

Published online by Cambridge University Press:  02 May 2007

C. ALMARCHA
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Universités d'Aix Marseille et CNRS, 49 rue Joliot Curie, BP 146, 13384 Marseille cedex 13, France
P. CLAVIN
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Universités d'Aix Marseille et CNRS, 49 rue Joliot Curie, BP 146, 13384 Marseille cedex 13, France
L. DUCHEMIN
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre, Universités d'Aix Marseille et CNRS, 49 rue Joliot Curie, BP 146, 13384 Marseille cedex 13, France
J. SANZ
Affiliation:
ETSI Aeronauticos, Universitad Politecnica de Madrid, Madrid 28040, Spain

Abstract

An asymptotic analysis of Rayleigh–Taylor unstable ablation fronts encountered in inertial confinement fusion is performed in the case of a strong temperature dependence of the thermal conductivity. At leading order the nonlinear analysis leads to a free boundary problem which is an extension of the classical Rayleigh–Taylor instability with unity Atwood number and an additional potential flow of negligible density expelled perpendicular to the front. The nonlinear evolution of the front is analysed in two-dimensional geometry by a boundary integral method. The shape of the front develops a curvature singularity within a finite time, as for the Birkhoff–Rott equation for the Kelvin–Helmholtz instability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J. 2004 The Physics of Inertial Fusion, 1st edn. Oxford Science Publications.CrossRefGoogle Scholar
Baker, G., Caflisch, R. E. & Siegel, M. 1993 Singularity formation during Rayleigh–Taylor instability. J. Fluid Mech. 252, 5178.CrossRefGoogle Scholar
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1980 Vortex simulation of the Rayleigh–Taylor instability. Phys. Fluids 23, 14851490.CrossRefGoogle Scholar
Betti, R., Goncharov, V., McCrory, R. L. & Verdon, C. P. 1995 Self-consistent cutoff wave numbers of the Rayleigh–Taylor instability. Phys. Plasmas 2, 38443851.CrossRefGoogle Scholar
Betti, R., McCrory, R. L. & Verdon, C. P. 1993 Stability analysis of unsteady ablation fronts. Phys. Rev. Lett. 71, 31313134.CrossRefGoogle ScholarPubMed
Betti, R. & Sanz, J. 2006 Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 97, 205002.CrossRefGoogle ScholarPubMed
Bodner, S. 1974 Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett. 33, 761764.CrossRefGoogle Scholar
Bychkov, V., Golberg, S. M. & Liberman, M. A. 1994 Self-consistent model of the Rayleigh–Taylor instability in ablatively accelerated laser plasma. Phys. Plasmas 1, 29762986.CrossRefGoogle Scholar
Clavin, P. & Almarcha, C. 2005 Ablative Rayleigh–Taylor instability in the limit of an infinitely large density ratio. C. R. Méc. 333, 379388.CrossRefGoogle Scholar
Clavin, P. & Masse, L. 2004 Instabilities of ablations fronts in inertial fusion: a comparison with flames. Phys. Plasmas 11, 690705.CrossRefGoogle Scholar
Clavin, P. & Williams, F. 2005 Asymptotic spike evolution in Rayleigh–Taylor instability. J. Fluid Mech. 525, 105113.CrossRefGoogle Scholar
Duchemin, L., Josserand, C. & Clavin, P. 2005 Asymptotic behavior of the Rayleigh–Taylor instability. Phys. Rev. Lett. 94, 224501.CrossRefGoogle ScholarPubMed
Goncharov, V., Betti, R., McCrory, R. L., Sorotokin, P. & Verdon, C. P. 1996 Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas 3, 14021414.CrossRefGoogle Scholar
Layzer, D. 1955 On the instability of superimposed fluids in a gravitational field. Astrophys. J. 122, 112.CrossRefGoogle Scholar
Matsuoka, C. & Nishihara, K. 2006 Erratum: Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability. Phys. Rev. E 73, 026304 (2006). Phys. Rev. E 74, 049902.Google Scholar
Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of evolving vortex sheet. Proc. R. Soc. Lond. A 105119.Google Scholar
Pelcé, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.CrossRefGoogle Scholar
Piriz, A. 2001 Hydrodynamic instability of ablation fronts in inertial confinement fusion. Phys. Plasmas 8, 9971002.CrossRefGoogle Scholar
Piriz, A. R., Sanz, J. & Ibañez, L. F. 1997 Rayleigh–Taylor instability of the steady ablation fronts: The discontinuity model revisited. Phys. Plasmas 4, 11171126.CrossRefGoogle Scholar
Sanz, J. 1994 Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. Lett. 73, 27002703.CrossRefGoogle ScholarPubMed
Sanz, J. 1996 Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. E 53, 40264045.Google ScholarPubMed
Sanz, J., Masse, L. & Clavin, P. 2006 The linear Darrieus-Landau and Rayleigh–Taylor instabilities in inertial confinement fusion revisited. Phys. Plasmas 13, 102702.CrossRefGoogle Scholar
Sanz, J., Ramírez, J., Ramis, R., Betti, R. & Town, R. P. J. 2002 Nonlinear theory of the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 89, 195002.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their plan. Proc. R. Soc. Lond. 201, 192196.Google Scholar