Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more: https://www.cambridge.org/universitypress/about-us/news-and-blogs/cambridge-university-press-publishing-update-following-technical-disruption
We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/dohad.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Australia, there are two distinct populations, each with vastly disparate health outcomes: Aboriginal and Torres Strait Islander People and non-Aboriginal Australians. Aboriginal Australians have significantly higher rates of health and socioeconomic disadvantage, and Aboriginal babies are also more likely to be born low birth weight or growth restricted. The Developmental Origins of Health and Disease (DOHaD) hypothesis advocates that a sub-optimal intrauterine environment, often manifested as diminished foetal growth, during critical periods of foetal development has the potential to alter the risk of non-communicable disease in the offspring. A better understanding of the role of the intrauterine environment and subsequent developmental programming, in response to both transgenerational and immediate stimuli, in Aboriginal Australians remains a relatively unexplored field and may provide insights into the prevailing health disparities between Aboriginal and non-Aboriginal children. This narrative review explores the role of DOHaD in explaining the ongoing disadvantage experienced by Aboriginal People in today’s society through a detailed discussion of the literature on the association between foetal growth, as a proxy for the quality of the intrauterine environment, and outcomes in the offspring including perinatal health, early life development and childhood education. The literature largely supports this hypothesis and this review therefore has potential implications for policy makers not only in Australia but also in other countries that have minority and Indigenous populations who suffer disproportionate disadvantage such as the United States, Canada and New Zealand.
Footprints in Time: The Longitudinal Study of Indigenous Children (LSIC) is a national study of 1759 Australian Aboriginal and Torres Strait Islander children living across urban, regional and remote areas of Australia. The study is in its 11th wave of annual data collection, having collected extensive data on topics including birth and early life influences, parental health and well-being, identity, cultural engagement, language use, housing, racism, school engagement and academic achievement, and social and emotional well-being. The current paper reviews a selection of major findings from Footprints in Time relating to the developmental origins of health and disease for Australian Aboriginal and Torres Strait Islander peoples. Opportunities for new researchers to conduct further research utilizing the LSIC data set are also presented.
Children of mothers with youth-onset (<18 years) type 2 diabetes (T2D) are at increased risk of youth-onset T2D. In Canada, the highest reported prevalence of youth-onset T2D is in First Nation youth, some of whom harbor a unique genetic predisposition HNF1α polymorphism which has been associated with age of onset and clinical presentation. To describe the characteristics of the Next Generation birth cohort (n=260) at 7–9 years (n=88) and 14–16 years of age (n=27). This is a cross-sectional study of offspring exposed in utero to T2D (Next Generation Birth Cohort). Annual assessments from age 7 include height and weight, and biochemical testing (glucose, insulin, lipids, HbA1c). Descriptive statistics were employed. χ2 tests and repeated-measures ANOVA were used to compare categorical and continuous characteristics, respectively. In total, 11.9% of the total cohort have developed T2D. Of those 14–16.9 years of age, 16.0% have developed T2D. 92% of the offspring ages 7–9 and 70.3% of offspring ages 14–16 are overweight or obese. Children had a significantly higher body mass index z-score than adolescents (2.9 v. 1.5, P=0.001). Comparing the different HNF1α genotypes (G/G wildtype, G/S heterozygote, S/S homozygote); HbA1c (GG: 5.5% v. G/S: 5.7% v. S/S: 8.8%; P=0.0052), insulin (GG: 103 v. G/S: 202; P=0.05) and T2D status (G/G: 5.7% v. G/S: 28.1% v. S/S: 72.7%; P<0.0001) were significantly different between groups. T2D is very common among adolescents of mothers with youth-onset T2D. Early childhood obesity and the HNF1α G319S allele are associated with the incidence of T2D in the Next Gen offspring.
Adverse pregnancy outcomes including prematurity and low birth weight (LBW) have been associated with life-long chronic disease risk for the infant. Stress during pregnancy increases the risk of adverse pregnancy outcomes. Many studies have reported the incidence of adverse pregnancy outcomes in Indigenous populations and a smaller number of studies have measured rates of stress and depression in these populations. This study sought to examine the potential association between stress during pregnancy and the rate of adverse pregnancy outcomes in Australian Indigenous women residing in rural and remote communities in New South Wales. This study found a higher rate of post-traumatic stress disorder, depression and anxiety symptoms during pregnancy than the general population. There was also a higher incidence of prematurity and LBW deliveries. Unfortunately, missing post-traumatic stress disorder and depressive symptomatology data impeded the examination of associations of interest. This was largely due to the highly sensitive nature of the issues under investigation, and the need to ensure adequate levels of trust between Indigenous women and research staff before disclosure and recording of sensitive research data. We were unable to demonstrate a significant association between the level of stress and the incidence of adverse pregnancy outcomes at this stage. We recommend this longitudinal study continue until complete data sets are available. Future research in this area should ensure prioritization of building trust in participants and overestimating sample size to ensure no undue pressure is placed upon an already stressed participant.
Childhood obesity rates are higher among Indigenous compared with non-Indigenous Australian children. It has been hypothesized that early-life influences beginning with the intrauterine environment predict the development of obesity in the offspring. The aim of this paper was to assess, in 227 mother–child dyads from the Gomeroi gaaynggal cohort, associations between prematurity, Gestation Related-Optimal Weight (GROW) centiles, maternal adiposity (percentage body fat, visceral fat area), maternal non-fasting plasma glucose levels (measured at mean gestational age of 23.1 weeks) and offspring BMI and adiposity (abdominal circumference, subscapular skinfold thickness) in early childhood (mean age 23.4 months). Maternal non-fasting plasma glucose concentrations were positively associated with infant birth weight (P=0.005) and GROW customized birth weight centiles (P=0.008). There was a significant association between maternal percentage body fat (P=0.02) and visceral fat area (P=0.00) with infant body weight in early childhood. Body mass index (BMI) in early childhood was significantly higher in offspring born preterm compared with those born at term (P=0.03). GROW customized birth weight centiles was significantly associated with body weight (P=0.01), BMI (P=0.007) and abdominal circumference (P=0.039) at early childhood. Our findings suggest that being born preterm, large for gestational age or exposed to an obesogenic intrauterine environment and higher maternal non-fasting plasma glucose concentrations are associated with increased obesity risk in early childhood. Future strategies should aim to reduce the prevalence of overweight/obesity in women of child-bearing age and emphasize the importance of optimal glycemia during pregnancy, particularly in Indigenous women.
Although low birth weight (LBW) increases the risk for type 2 diabetes (T2DM), the relationship between high birth weight (HBW) and T2DM is less definitive and largely confined to North American Indigenous populations. We re-examined the relationship between LBW (<2500 g) and HBW (>4000 g) and both T2DM and gestational diabetes (GDM) among First Nations and non-First Nations women in Saskatchewan. We analyzed new data for female subjects from a 2001 case-control study that led to our hefty fetal phenotype hypothesis. Using survival analysis techniques and a validated algorithm for identifying diabetes in health care administrative data, we followed a 1950–1984 birth cohort of 2003 women until March 31, 2013. Cox regression analysis determined the time to occurrence of first episode of GDM and diagnosis of T2DM by birth weight and ethnicity. First Nations women with HBW demonstrated a greater risk for developing both T2DM [hazard ratios (HR) 1.568; 95% confidence interval (CI) 1.188, 2.069] and GDM (HR 1.468; 95% CI 1.016, 2.121) than those with normal birth weight (NBW). Non-First Nations women with LBW had a greater risk of developing GDM than those with NBW (HR 1.585; 95% CI 1.001, 2.512). HBW is a risk factor for GDM and T2DM among First Nations women. This is likely due to exposure of these women to their own mothers’ diabetic pregnancies or gestational impaired glucose tolerance. This inter-generational amplification of T2DM risk mediated through prenatal exposures appears to play a substantial role in the epidemic of T2DM among First Nations peoples.
Barker et al. proposed that low birth weight predisposes to higher death rates in adult life. We previously confirmed this fact in a cohort of young adults who were born in a remote Australian Aboriginal community between 1956 and 1985. We now present data in these same people with four more years of follow-up and a greater number of deaths. The fates of participants were documented from age 15 years until death, start of dialysis, or until the end of 2010 and causes of death were derived from clinic narratives and dialysis records. Rates of natural deaths were compared by birth cohorts and birth weight, and hazard ratios were calculated using Cox proportional hazards methods, by birth weight and adjusted for birth cohort and sex. Over follow-up of 19,661 person-years, 61 people died of natural causes between age 15 and the censor date. Low birth weights (<2.5 kg) were associated with higher rates of natural death, with HR (95% CI) 1.76 (1.1–2.9, P=0.03), after adjustment for year of birth and sex. The effect was particularly prominent for deaths at <41 years of age, and with deaths from respiratory conditions/sepsis and unusual causes. A predisposing effect of low birth weight on adult deaths was confirmed. This phenomenon, occurring in the context of dramatically improved survivals of lower birth weight infants and children since the early 1960s, helps explain the current epidemic of chronic disease in Aboriginal people. Birth weights continue to improve, so excess deaths from this source should progressively be minimized.
Early-life conditions influence organ growth patterns and their functions, as well as subsequent risk for non-communicable chronic diseases in later life. A limited number of studies have determined that in Bangladesh, kidney size relates to its function among children as a consequence of the maternal and postnatal conditions. The present study objectives were to determine early-life conditions in relation to childhood kidney size and to compare their influences on kidney function. The study was embedded in a population-based prospective cohort of 1067 full-term singleton live births followed from fetal life onward. Kidney volume was measured by ultrasound in children at the age of 4.5 years (range 45–64 months), and the estimated glomerular filtration rate (eGFR) was assessed at the age of 9 years (range 96–116 months). The mean (s.d.) kidney volume of children at 4.5 years was 64.2 (11.3) cm3, with a significant mean difference observed between low birth weight and normal birth weight children (P<0.001). The multivariable model showed, changes in status from low birth weight to normal birth weight children, with kidney volume increases of 2.92 cm3/m2, after adjusting for the child’s age, sex, maternal age and early pregnancy body mass index, and socio-economic index variables. One-unit change in kidney volume (cm3/m2) improved the eGFR to 0.18 ml/min/1.73 m2. The eGFR in low birth weight children was 5.44 ml/min/1.73 m2 less than that in normal birth weight children after adjustments. Low birth weight leads to adverse effects on kidney size and function in children.