Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:24:48.708Z Has data issue: false hasContentIssue false

Teratogenic effects of Bocconia frutescens L.

Published online by Cambridge University Press:  07 January 2020

L. S. Lunagómez
Affiliation:
Maestría en Seguridad Alimentaria y Nutricional, Facultad de Nutrición, Universidad Veracruzana, Xalapa, México
I. Santiago-Roque
Affiliation:
Laboratorio de Neurotoxicología, Facultad de Bioanálisis, Universidad Veracruzana, Xalapa, México
Y. A. Gheno-Heredia
Affiliation:
Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Córdoba Veracruz, México
A. A. Corona-Morales
Affiliation:
Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, México
V. E. Bolado-García*
Affiliation:
Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, México
*
Address for correspondence: Victoria Eugenia Bolado-García, Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Médicos y odontólogos s/n, Col. Unidad del Bosque, Universidad Veracruzana, Xalapa 91010, México. Email: [email protected]

Abstract

It is estimated that 80% of the world population trusts traditional medicine. A large number of Americans use infusions of Bocconia frutescens L. leaves to treat cough and gastrointestinal disorders. However, phytochemical studies reveal that this plant contains alkaloids and other potentially harmful substances. This study aimed to evaluate the teratogenic effects of B. frutescens L. in an experimental model. Pregnant Wistar rats were administered lyophilized B. frutescens L. extract at 300 mg/kg/day or vehicle by orogastric route during the organogenesis period (gestation days 7–13), and external and internal congenital malformations were analyzed on the progeny on gestational day 20. Bocconia frutescens L. produced a significant increase in the number of different malformations, relative to the control group. We conclude that the consumption of B. frutescens L. during pregnancy at a dose equivalent to that consumed by humans increases the risk of teratogenic effects.

Type
Brief Report
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization. Birth Defects, 2010. WHO, Geneva.Google Scholar
Hobbs, CA, Chowdhury, S, Cleves, MA, et al. Genetic epidemiology and nonsyndromic structural birth defects: from candidate genes to epigenetics. JAMA Pediatr. 2014; 168, 371377.10.1001/jamapediatrics.2013.4858CrossRefGoogle ScholarPubMed
Sadler, TW.Establishing the embryonic axes: prime time for teratogenic insults. J Cardiovasc Dev Dis. 2017; 4, 15.10.3390/jcdd4030015CrossRefGoogle ScholarPubMed
Ujházy, E, Mach, M, Navarová, J, Brucknerová, I, Dubovický, M. Teratology – past, present and future. Interdiscip Toxicol. 2012; 5, 163168.10.2478/v10102-012-0027-0CrossRefGoogle ScholarPubMed
World Health Organization. Traditional Medicine Strategy 2002–2005, 2002. WHO, Geneva.Google Scholar
Macías-Peacok, B, Pérez-Jackson, L, Suárez-Crespo, MF, Fong-Domínguez, CO, Pupo-Perera, E. Consumo de plantas medicinales por mujeres embarazadas. Rev Med Inst Mex Seguro Soc. 2009; 47, 331334.Google Scholar
Velázquez, C, Calzada, F, Torres, J, Gonzáles, F, Ceballos, G.Antisecretory activity of plants used to treat gastrointestinal disorders in México. J Ethnopharmacol. 2006; 103, 6670.10.1016/j.jep.2005.06.046CrossRefGoogle ScholarPubMed
Yu, X, Gao, X, Zhu, Z, et al. Alkaloids from the tribe Bocconieae (papaveraceae): a chemical and biological review. Molecules. 2014; 19, 1304213060.10.3390/molecules190913042CrossRefGoogle ScholarPubMed
Chinchilla, M, Valerio, I, Sánchez, R, et al. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica. Rev Biol Trop. 2012; 60, 881891.10.15517/rbt.v60i2.4024CrossRefGoogle ScholarPubMed
Cruz-Vega, DE, Verde-Star, MJ, Salinas-González, N, et al. Antimycobacterial activity of Juglans regia, Juglans mollis, Carya illinoensis and Bocconia frutescens. Phytother Res. 2008; 22, 557559.10.1002/ptr.2343CrossRefGoogle ScholarPubMed
Chinchilla-Carmona, M, Valerio-Campos, I, Sánchez-Porras, R, et al. Anti-leishmanial activity in plants from a Biological Reserve of Costa Rica. Rev Biol Trop. 2014; 62, 12291240.10.15517/rbt.v62i3.12377CrossRefGoogle ScholarPubMed
Calzada, F, Yépez-Mulia, L, Tapia-Contreras, A.Effect of Mexican medicinal plant used to treat trichomoniasis on Trichomonas vaginalistrophozoites. J Ethnopharmacol. 2007; 113, 248251.10.1016/j.jep.2007.06.001CrossRefGoogle Scholar
Calzada, F, Arista, R, Pérez, H.Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal-gum acacia-induced hyperperistalsis in rats. J Ethnopharmacol. 2010; 128, 4951.10.1016/j.jep.2009.12.022CrossRefGoogle ScholarPubMed
Green, BT, Lee, ST, Panter, KE, Brown, DR.Piperidine alkaloids: human and food animal teratogens. Food Chem Tox. 2012; 50, 20492055.10.1016/j.fct.2012.03.049CrossRefGoogle ScholarPubMed
Green, BT, Lee, ST, Welch, KD, Panter, KE.Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission. Birth Defects Res C Embryo Today. 2013; 99, 235246.10.1002/bdrc.21049CrossRefGoogle ScholarPubMed
Panter, KE, Welch, KD, Gardner, DR, Green, BT.Poisonous plants: effects on embryo and fetal development. Birth Defects Res C Embryo Today. 2013; 99, 223234.10.1002/bdrc.21053CrossRefGoogle ScholarPubMed
Wilson, J, Warkany, J.Teratology Principles and Techniques, 1965. University of Chicago Press, Chicago.Google Scholar
Peters, PWJ. Double staining of fetal skeletons for cartilage and bone. In Methods in Prenatal Toxicology (eds. Neubert, D, Merker, HJ, Kwasigroch, TF), 1977; pp. 153154. Georg Thieme Publishers, Stuttgart, Germany.Google Scholar
Crawley, MJ.GLIM for Ecologists, 1993. Blackwell, Scientific Publications, Oxford, UK.Google Scholar
Bolker, BM, Brooks, ME, Clark, CJ, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009; 24, 127135.10.1016/j.tree.2008.10.008CrossRefGoogle ScholarPubMed
Ma, Z-l, Qin, Y, Wang, G, et al. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo. PLoS ONE. 2012; 7, 18.Google ScholarPubMed
Gonzáles, J, Benavides, V, Rojas, R, Pino, J.Embryotoxic and teratogenic effect of Ruta chalepensis L. «rue», in mouse (Mus musculus). Rev Peru Biol. 2007; 13, 223225.Google Scholar
Rad, SZK, Rameshrad, M, Hosseinzadeh, H.Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review. Iran J Basic Med Sci. 2017; 20, 516529.Google ScholarPubMed
Singh, N, Sharma, B.Toxicological effects of berberine and sanguinarine. Front Mol Biosci. 2018; 5, 21.10.3389/fmolb.2018.00021CrossRefGoogle ScholarPubMed
Vrba, J, Dolezel, P, Vicar, J, Ulrichová, J.Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells. Toxicol Vitro. 2009; 23, 580588.CrossRefGoogle ScholarPubMed