Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T02:08:13.299Z Has data issue: false hasContentIssue false

Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress

Published online by Cambridge University Press:  21 September 2020

Janna L. Morrison*
Affiliation:
Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
Oyekoya T. Ayonrinde
Affiliation:
Fiona Stanley Hospital, Murdoch, WA, Australia Medical School, The University of Western Australia, Perth, WA, Australia
Alison S. Care
Affiliation:
The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
Geoffrey D. Clarke
Affiliation:
Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
Jack R.T. Darby
Affiliation:
Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
Anna L. David
Affiliation:
Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
Justin M. Dean
Affiliation:
Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
Stuart B. Hooper
Affiliation:
The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
Marcus J. Kitchen
Affiliation:
School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
Christopher K. Macgowan
Affiliation:
Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
Andrew Melbourne
Affiliation:
School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
Erin V McGillick
Affiliation:
The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
Charles A. McKenzie
Affiliation:
Department of Medical Biophysics, Western University, London, ON, Canada Lawson Health Research Institute and Children’s Health Research Institute, London, ON, Canada
Navin Michael
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
Nuruddin Mohammed
Affiliation:
Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
Suresh Anand Sadananthan
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
Eric Schrauben
Affiliation:
Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
Timothy R.H. Regnault
Affiliation:
Lawson Health Research Institute and Children’s Health Research Institute, London, ON, Canada Department of Obstetrics and Gynecology, Western University, London, ON, Canada Department of Physiology and Pharmacology, Western University, London, ON, Canada
S. Sendhil Velan
Affiliation:
Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
*
Address for correspondence: Janna L. Morrison, Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, AdelaideGPO 2471, SA, Australia. Email: [email protected]

Abstract

Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.

Type
Review
Copyright
© The Author(s), 2020. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abinader, R, Warsof, SL. Benefits and pitfalls of ultrasound in obstetrics and gynecology. Obstet Gynecol Clin North Am. 2019; 46(2), 367378.CrossRefGoogle ScholarPubMed
RCOG. The Investigation and Management of the Small-for-Gestational-Age Fetus, 2014. Royal College of Obstetricians and Gynaecologists, London, United Kingdom.Google Scholar
Sovio, U, White, IR, Dacey, A, Pasupathy, D, Smith, GCS. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet. 2015; 386(10008), 20892097.CrossRefGoogle ScholarPubMed
Lyall, F, Robson, SC, Bulmer, JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013; 62(6), 10461054.CrossRefGoogle ScholarPubMed
Drouin, O, Boutin, A, Paquette, K, et al. First-trimester uterine artery doppler for the prediction of SGA at birth: the great obstetrical syndromes study. J Obstet Gynaecol Can. 2018; 40(12), 15921599.CrossRefGoogle ScholarPubMed
Poon, LC, Shennan, A, Hyett, JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynecol Obstet. 2019; 145(Suppl 1), 133.CrossRefGoogle ScholarPubMed
Groom, KM, David, AL. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2s), S829S840.CrossRefGoogle ScholarPubMed
Cnossen, JS, Morris, RK, ter Riet, G, et al. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis. Can. Med. Assoc. J. 2008; 178(6), 701711.CrossRefGoogle ScholarPubMed
English, FA, Kenny, LC, McCarthy, FP. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015; 8, 712.Google ScholarPubMed
Mifsud, W, Sebire, NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014; 36(2), 117128.CrossRefGoogle ScholarPubMed
Kingdom, JC, Audette, MC, Hobson, SR, Windrim, RC, Morgen, E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2s), s803s817.CrossRefGoogle ScholarPubMed
Figueras, F, Gratacos, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014; 36(2), 8698.CrossRefGoogle ScholarPubMed
Figueras, F, Caradeux, J, Crispi, F, Eixarch, E, Peguero, A, Gratacos, E. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2s), S790S802.e791.CrossRefGoogle ScholarPubMed
Darby, JRT, Varcoe, TJ, Orgeig, S, Morrison, JL. Cardiorespiratory consequences of intrauterine growth restriction: influence of timing, severity and duration of hypoxaemia Theriogenology. 2020; pii: S0093-691X(20)30093-5.CrossRefGoogle ScholarPubMed
Morrison, JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008; 35(7), 730743.CrossRefGoogle ScholarPubMed
Woodman, AG, Care, AS, Mansour, Y, et al. Modest and severe maternal iron deficiency in pregnancy are associated with fetal anaemia and organ-specific hypoxia in rats. Sci Rep. 2017; 7, 46573.CrossRefGoogle ScholarPubMed
Corsi, DJ, Walsh, L, Weiss, D, et al. Association between self-reported prenatal cannabis use and maternal, perinatal, and neonatal outcomes. JAMA. 2019; 322(2), 145152.CrossRefGoogle ScholarPubMed
Brar, BK, Patil, PS, Jackson, DN, Gardner, MO, Alexander, JM, Doyle, NM. Effect of intrauterine marijuana exposure on fetal growth patterns and placental vascular resistance. J Matern Fetal Neonatal Med. 2019, 15. doi: 10.1080/14767058.2019.1683541.CrossRefGoogle ScholarPubMed
Benevenuto, SG, Domenico, MD, Martins, MA, et al. Recreational use of marijuana during pregnancy and negative gestational and fetal outcomes: an experimental study in mice. Toxicology. 2017; 376, 94101.CrossRefGoogle ScholarPubMed
Yamaleyeva, LM, Sun, Y, Bledsoe, T, Hoke, A, Gurley, SB, Brosnihan, KB. Photoacoustic imaging for in vivo quantification of placental oxygenation in mice. FASEB J. 2017; 31(12), 55205529.CrossRefGoogle ScholarPubMed
Yamaleyeva, LM, Brosnihan, KB, Smith, LM, Sun, Y. Preclinical ultrasound-guided photoacoustic imaging of the placenta in normal and pathologic pregnancy. Mol Imaging. 2018; 17, 1536012118802721.CrossRefGoogle ScholarPubMed
Maneas, E, Aughwane, R, Huynh, N, et al. Photoacoustic imaging of the human placental vasculature. J Biophoton. 2020; 13(4), e201900167.Google ScholarPubMed
Gowland, P. Safety of fetal MRI scanning. In Fetal MRI (ed. Prayer, D), 2011; pp. 4954. Springer, Berlin, Heidelberg.Google Scholar
Ray, JG, Vermeulen, MJ, Bharatha, A, Montanera, WJ, Park, AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016; 316(9), 952961.CrossRefGoogle ScholarPubMed
Duan, AQ, Darby, JRT, Soo, JY, et al. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. AJP-RIC 2019; 317(6), R780R792.Google ScholarPubMed
Prsa, M, Sun, L, van Amerom, J, et al. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014; 7(4), 663670.CrossRefGoogle ScholarPubMed
Giussani, DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol. 2016; 594(5), 12151230.CrossRefGoogle ScholarPubMed
Bennet, L. Sex, drugs and rock and roll: tales from preterm fetal life. J Physiol. 2017; 595(6), 18651881.CrossRefGoogle ScholarPubMed
Zhu, MY, Milligan, N, Keating, S, et al. The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol. 2015. doi: 10.1016/j.ajog.2015.10.004.Google ScholarPubMed
Poudel, R, McMillen, IC, Dunn, SL, Zhang, S, Morrison, JL. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2015; 308(3), R151R162.CrossRefGoogle ScholarPubMed
Miller, SL, Supramaniam, VG, Jenkin, G, Walker, DW, Wallace, EM. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am J Obstet Gynecol. 2009; 201(6), 613 e611e618.CrossRefGoogle ScholarPubMed
Porayette, P, Madathil, S, Sun, L, et al. MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenat Diagn. 2015. doi: 10.1002/pd.4762.Google Scholar
Schrauben, EM, Darby, JRT, Saini, BS, et al. Technique for comprehensive fetal hepatic blood flow assessment in sheep using 4D flow MRI. J Physiol. 2020. doi: 10.1113/jp279631.CrossRefGoogle ScholarPubMed
Schrauben, EM, Saini, BS, Darby, JRT, et al. Fetal hemodynamics and cardiac streaming assessed by 4D flow cardiovascular magnetic resonance in fetal sheep. J Cardiovasc Magn Reson. 2019; 21(1), 8.CrossRefGoogle ScholarPubMed
Cho, SKS, Darby, JRT, Saini, BS, et al. Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. J Physiol. 2020. doi: 10.1113/jp279054.CrossRefGoogle ScholarPubMed
Duan, AQ, Lock, MC, Perumal, SR, et al. Feasibility of detecting myocardial infarction in the sheep fetus using late gadolinium enhancement CMR imaging. J Cardiovasc Magn Reson. 2017; 19(1), 69.CrossRefGoogle ScholarPubMed
Soothill, PW, Nicolaides, KH, Campbell, S. Prenatal asphyxia, hyperlacticaemia, hypoglycaemia, and erythroblastosis in growth retarded fetuses. Br Med J (Clin Res Ed). 1987; 294(6579), 10511053.CrossRefGoogle ScholarPubMed
Portnoy, S, Seed, M, Sled, JG, Macgowan, CK. Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: In-vitro validation in fetal blood. Magn Reson Med. 2017; 78(6), 23522359.CrossRefGoogle ScholarPubMed
Melbourne, A, Aughwane, R, Sokolska, M, et al. Separating fetal and maternal placenta circulations using multiparametric MRI. Magn Reson Med. 2019; 81(1), 350361.CrossRefGoogle ScholarPubMed
Sorensen, A, Pedersen, M, Tietze, A, Ottosen, L, Duus, L, Uldbjerg, N. BOLD MRI in sheep fetuses: a non-invasive method for measuring changes in tissue oxygenation. Ultrasound Obstet Gynecol. 2009; 34(6), 687692.CrossRefGoogle ScholarPubMed
Luo, J, Abaci Turk, E, Bibbo, C, et al. In vivo quantification of placental insufficiency by BOLD MRI: a human study. Sci Rep. 2017; 7(1), 3713.CrossRefGoogle ScholarPubMed
Saini, BS, Darby, JRT, Portnoy, S, et al. Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. J Physiol. 2020. doi: 10.1113/jp279725.CrossRefGoogle ScholarPubMed
Morrison, JL, Berry, MJ, Botting, KJ, et al. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol. 2018; 315(6), R1123R1153.CrossRefGoogle Scholar
Aughwane, R, Ingram, E, Johnstone, ED, Salomon, LJ, David, AL, Melbourne, A. Placental MRI and its application to fetal intervention. Prenat Diagn. 2020; 40(1), 3848.CrossRefGoogle ScholarPubMed
Aughwane, R, Mufti, N, Flouri, D, et al. MRI measurement of placental perfusion and oxygen saturation in early onset fetal growth restriction. BJOG. 2020. doi: 10.1111/1471-0528.16387.Google ScholarPubMed
Roy, CW, Marini, D, Lloyd, DFA, et al. Preliminary experience using motion compensated CINE magnetic resonance imaging to visualise fetal congenital heart disease. Circ Cardiovasc Imaging. 2018; 11(12), e007745.CrossRefGoogle ScholarPubMed
van Amerom, JFP, Lloyd, DFA, Deprez, M, et al. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn Reson Med. 2019; 82(3), 10551072.Google ScholarPubMed
Chaptinel, J, Yerly, J, Mivelaz, Y, et al. Fetal cardiac cine magnetic resonance imaging in utero. Sci Rep. 2017; 7(1), 15540.CrossRefGoogle ScholarPubMed
Yamamura, J, Kopp, I, Frisch, M, et al. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging. 2012; 35(5), 10711076.CrossRefGoogle ScholarPubMed
Yamamura, J, Schnackenburg, B, Kooijmann, H, et al. High resolution MR imaging of the fetal heart with cardiac triggering: a feasibility study in the sheep fetus. Eur Radiol. 2009; 19(10), 23832390.CrossRefGoogle ScholarPubMed
Melbourne, A, Eaton-Rosen, Z, Orasanu, E, et al. Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry. Hum Brain Mapp. 2016; 37(7), 24792492.CrossRefGoogle ScholarPubMed
Volpe, JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009; 8(1), 110124.CrossRefGoogle ScholarPubMed
Kendall, GS, Melbourne, A, Johnson, S, et al. White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology. 2014; 271(1), 230238.CrossRefGoogle Scholar
Partridge, SC, Mukherjee, P, Henry, RG, et al. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage. 2004; 22(3), 13021314.CrossRefGoogle ScholarPubMed
Ball, G, Pazderova, L, Chew, A, et al. Thalamocortical connectivity predicts cognition in children born preterm. Cereb Cortex. 2015; 25(11), 43104318.CrossRefGoogle ScholarPubMed
Ball, G, Srinivasan, L, Aljabar, P, et al. Development of cortical microstructure in the preterm human brain. Proc Natl Acad Sci U S A. 2013; 110(23), 95419546.CrossRefGoogle ScholarPubMed
Dai, X, Muller, HG, Wang, JL, Deoni, SCL. Age-dynamic networks and functional correlation for early white matter myelination. Brain Struct Funct. 2019; 224(2), 535551.CrossRefGoogle ScholarPubMed
Morrison, JL, Berry, MJ, Botting, KJ, et al. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol RIC. 2018. doi: 10.1152/ajpregu.00391.2017.Google Scholar
Woodward, LJ, Anderson, PJ, Austin, NC, Howard, K, Inder, TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006; 355(7), 685694.CrossRefGoogle ScholarPubMed
Schmidbauer, V, Geisl, G, Diogo, M, et al. SyMRI detects delayed myelination in preterm neonates. Eur Radiol. 2019; 29(12), 70637072.CrossRefGoogle ScholarPubMed
van de Looij, Y, Dean, JM, Gunn, AJ, Huppi, PS, Sizonenko, SV. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int J Develop Neurosci. 2015; 45, 2938.CrossRefGoogle ScholarPubMed
van de Looij, Y, Lodygensky, GA, Dean, J, et al. High-field diffusion tensor imaging characterization of cerebral white matter injury in lipopolysaccharide-exposed fetal sheep. Pediatr Res. 2012; 72(3), 285292.CrossRefGoogle ScholarPubMed
Davidson, JO, Dean, JM, Fraser, M, et al. Perinatal brain injury: mechanisms and therapeutic approaches. Front Biosci. 2018; 23, 22042226.Google ScholarPubMed
Azzopardi, D, Wyatt, JS, Cady, EB, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1989; 25(5), 445451.CrossRefGoogle ScholarPubMed
Malhotra, A, Ditchfield, M, Fahey, MC, et al. Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr Res. 2017; 82(2), 184193.CrossRefGoogle ScholarPubMed
Malhotra, A, Sepehrizadeh, T, Dhollander, T, et al. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. Neuroimage Clin. 2019; 24, 101991.CrossRefGoogle ScholarPubMed
Back, SA, Luo, NL, Borenstein, NS, Levine, JM, Volpe, JJ, Kinney, HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci. 2001; 21(4), 13021312.CrossRefGoogle ScholarPubMed
Andersen, SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003; 27(1–2), 318.CrossRefGoogle ScholarPubMed
de Graaf-Peters, VB, Hadders-Algra, M. Ontogeny of the human central nervous system: what is happening when? Early Human Develop. 2006; 82(4), 257266.CrossRefGoogle Scholar
Kriegstein, AR. Constructing circuits: neurogenesis and migration in the developing neocortex. Epilepsia. 2005; 46(Suppl 7), 1521.CrossRefGoogle ScholarPubMed
Lu, D, He, L, Xiang, W, et al. Somal and dendritic development of human CA3 pyramidal neurons from midgestation to middle childhood: a quantitative Golgi study. Anat Rec. 2013; 296(1), 123132.CrossRefGoogle ScholarPubMed
Mrzljak, L, Uylings, HB, Kostovic, I, van Eden, CG. Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J Comp Neurol. 1992; 316(4), 485496.CrossRefGoogle Scholar
Dean, JM, Bennet, L, Back, SA, McClendon, E, Riddle, A, Gunn, AJ. What brakes the preterm brain? An arresting story. Pediatr Res. 2014; 75(1–2), 227233.CrossRefGoogle Scholar
Back, SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. 2017; 134(3), 331349.CrossRefGoogle ScholarPubMed
Back, SA, Miller, SP. Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann Neurol. 2014; 75(4), 469486.CrossRefGoogle ScholarPubMed
Thompson, DK, Kelly, CE, Chen, J, et al. Characterisation of brain volume and microstructure at term-equivalent age in infants born across the gestational age spectrum. Neuroimage Clin. 2019; 21, 101630.CrossRefGoogle ScholarPubMed
Ment, LR, Hirtz, D, Hüppi, PS. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 2009; 8(11), 10421055.CrossRefGoogle ScholarPubMed
Dean, JM, McClendon, E, Hansen, K, et al. Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci Trans Med. 2013; 5(168), 168ra167.CrossRefGoogle ScholarPubMed
Riddle, A, Dean, J, Buser, JR, et al. Histopathological correlates of magnetic resonance imaging-defined chronic perinatal white matter injury. Ann Neurol. 2011; 70(3), 493507.CrossRefGoogle ScholarPubMed
Buser, JR, Maire, J, Riddle, A, et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol. 2012; 71(1), 93109.CrossRefGoogle ScholarPubMed
Favrais, G, van de Looij, Y, Fleiss, B, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011; 70(4), 550565.CrossRefGoogle ScholarPubMed
Zhang, H, Schneider, T, Wheeler-Kingshott, CA, Alexander, DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012; 61(4), 10001016.CrossRefGoogle ScholarPubMed
Lynch, KM, Cabeen, RP, Toga, AW, Clark, KA. Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI. NeuroImage. 2020; 212, 116672.CrossRefGoogle ScholarPubMed
Jelescu, IO, Veraart, J, Adisetiyo, V, Milla, SS, Novikov, DS, Fieremans, E. One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI? NeuroImage. 2015; 107, 242256.CrossRefGoogle ScholarPubMed
Batalle, D, O’Muircheartaigh, J, Makropoulos, A, et al. Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. NeuroImage. 2019; 185, 764775.CrossRefGoogle ScholarPubMed
Mürner-Lavanchy, IM, Kelly, CE, Reidy, N, et al. White matter microstructure is associated with language in children born very preterm. Neuroimage Clin. 2018; 20, 808822.CrossRefGoogle ScholarPubMed
Kelly, CE, Thompson, DK, Chen, J, et al. Axon density and axon orientation dispersion in children born preterm. Hum Brain Mapp. 2016; 37(9), 30803102.CrossRefGoogle ScholarPubMed
Ohki, A, Saito, S, Hata, J, Okano, HJ, Higuchi, T, Fukuchi, K. Neurite orientation dispersion and density imaging for evaluating the severity of neonatal hypoxic-ischemic encephalopathy in rats. Magn Reson Imaging. 2019; 62, 214219.CrossRefGoogle ScholarPubMed
Omidvarnia, A, Fransson, P, Metsaranta, M, Vanhatalo, S. Functional bimodality in the brain networks of preterm and term human newborns. Cereb Cortex. 2014; 24(10), 26572668.CrossRefGoogle ScholarPubMed
Denisova, K. Neurobiology, not artifacts: Challenges and guidelines for imaging the high risk infant. NeuroImage. 2019; 185, 624640.CrossRefGoogle Scholar
Gholipour, A, Estroff, JA, Warfield, SK. Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging. 2010; 29(10), 17391758.CrossRefGoogle ScholarPubMed
Ebner, M, Wang, G, Li, W, et al. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage. 2020; 206, 116324.CrossRefGoogle ScholarPubMed
Egana-Ugrinovic, G, Sanz-Cortes, M, Figueras, F, Bargallo, N, Gratacos, E. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. Am J Obstet Gynecol. 2013; 209(2), 126.e121126.e128.CrossRefGoogle ScholarPubMed
Egana-Ugrinovic, G, Sanz-Cortes, M, Couve-Perez, C, Figueras, F, Gratacos, E. Corpus callosum differences assessed by fetal MRI in late-onset intrauterine growth restriction and its association with neurobehavior. Prenat Diagn. 2014; 34(9), 843849.CrossRefGoogle ScholarPubMed
Sanz-Cortes, M, Simoes, RV, Bargallo, N, Masoller, N, Figueras, F, Gratacos, E. Proton magnetic resonance spectroscopy assessment of fetal brain metabolism in late-onset ‘small for gestational age’ versus ‘intrauterine growth restriction’ fetuses. Fetal Diagn Ther. 2015; 37(2), 108116.CrossRefGoogle ScholarPubMed
Makropoulos, A, Robinson, EC, Schuh, A, et al. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage. 2018; 173, 88112.CrossRefGoogle ScholarPubMed
Flemmer, AW, Thio, M, Wallace, MJ, et al. Lung hypoplasia in newborn rabbits with a diaphragmatic hernia affects pulmonary ventilation but not perfusion. Pediatr Res. 2017; 82(3), 536543.CrossRefGoogle Scholar
McGillick, EV, Lee, K, Yamaoka, S, et al. Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn. J Appl Physiol. 2017; 123(5), 12041213.CrossRefGoogle ScholarPubMed
Kitchen, MJ, Buckley, GA, Leong, AF, et al. X-ray specks: low dose in vivo imaging of lung structure and function. Phys Med Biol. 2015; 60(18), 72597276.CrossRefGoogle ScholarPubMed
Kitchen, MJ, Buckley, GA, Gureyev, TE, et al. CT dose reduction factors in the thousands using X-ray phase contrast. Sci Rep. 2017; 7(1), 15953.CrossRefGoogle ScholarPubMed
Gureyev, TE, Nesterets, YI, Baran, PM, et al. Propagation-based X-ray phase-contrast tomography of mastectomy samples using synchrotron radiation. Med Phys. 2019; 46(12), 54785487.CrossRefGoogle ScholarPubMed
Pacile, S, Baran, P, Dullin, C, et al. Advantages of breast cancer visualization and characterization using synchrotron radiation phase-contrast tomography. J Synchrotron Radiat. 2018; 25(Pt 5), 14601466.CrossRefGoogle ScholarPubMed
Ayonrinde, OT, Adams, LA, Mori, TA, et al. Sex differences between parental pregnancy characteristics and nonalcoholic fatty liver disease in adolescents. Hepatology. 2018; 67(1), 108122.CrossRefGoogle ScholarPubMed
Ayonrinde, OT, Oddy, WH, Adams, LA, et al. Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. J Hepatol. 2017; 67(3), 568576.CrossRefGoogle ScholarPubMed
Tarnoki, AD, Tarnoki, DL, Bata, P, et al. Heritability of non-alcoholic fatty liver disease and association with abnormal vascular parameters: a twin study. Liver Int. 2012; 32(8), 12871293.CrossRefGoogle ScholarPubMed
Schwimmer, JB, Celedon, MA, Lavine, JE, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009; 136(5), 15851592.CrossRefGoogle ScholarPubMed
Oben, JA, Mouralidarane, A, Samuelsson, AM, et al. Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol. 2010; 52(6), 913920.CrossRefGoogle ScholarPubMed
Stewart, MS, Heerwagen, MJ, Friedman, JE. Developmental programming of pediatric nonalcoholic fatty liver disease: redefining the “first hit”. Clin Obstet Gynecol. 2013; 56(3), 577590.CrossRefGoogle ScholarPubMed
Bruce, KD, Cagampang, FR, Argenton, M, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009; 50(6), 17961808.CrossRefGoogle ScholarPubMed
Ashino, NG, Saito, KN, Souza, FD, et al. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem. 2012; 23(4), 341348.CrossRefGoogle ScholarPubMed
Bayol, SA, Simbi, BH, Fowkes, RC, Stickland, NC. A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring. Endocrinology. 2010; 151(4), 14511461.CrossRefGoogle ScholarPubMed
Abdelmalek, MF, Liu, C, Shuster, J, Nelson, DR, Asal, NR. Familial aggregation of insulin resistance in first-degree relatives of patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2006; 4(9), 11621169.CrossRefGoogle ScholarPubMed
Patel, KR, White, FV, Deutsch, GH. Hepatic steatosis is prevalent in stillborns delivered to women with diabetes mellitus. J Pediatr Gastroenterol Nutr. 2015; 60(2), 152158.CrossRefGoogle ScholarPubMed
Brumbaugh, DE, Tearse, P, Cree-Green, M, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr. 2013; 162(5), 930936.e931.CrossRefGoogle ScholarPubMed
Barbour, LA, Hernandez, TL. Maternal lipids and fetal overgrowth: Making fat from fat. Clin Ther. 2018; 40(10), 16381647.CrossRefGoogle ScholarPubMed
Bedogni, G, De Matteis, G, Fabrizi, M, et al. Association of bright liver with the PNPLA3 I148M gene variant in 1-year-old toddlers. J Clin Endocrinol Metabol. 2019; 104(6), 21632170.Google ScholarPubMed
Nobili, V, Marcellini, M, Marchesini, G, et al. Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children. Diabetes Care. 2007; 30(10), 26382640.CrossRefGoogle ScholarPubMed
Lee, SM, Kim, BJ, Koo, JN, et al. Nonalcoholic fatty liver disease is a risk factor for large-for-gestational-age birthweight. PLoS One. 2019; 14(8), e0221400.CrossRefGoogle ScholarPubMed
Ayonrinde, OT, Olynyk, JK, Beilin, LJ, et al. Gender-specific differences in adipose distribution and adipocytokines influence adolescent nonalcoholic fatty liver disease. Hepatology. 2011; 53(3), 800809.CrossRefGoogle ScholarPubMed
Kuo, AH, Li, J, Li, C, et al. Prenatal steroid administration leads to adult pericardial and hepatic steatosis in male baboons. Int J Obes. 2017; 41(8), 12991302.CrossRefGoogle ScholarPubMed
Ayonrinde, OT, Olynyk, JK, Marsh, JA, et al. Childhood adiposity trajectories and risk of nonalcoholic fatty liver disease in adolescents. J Gastroenterol Hepatol. 2015; 30(1), 163171.CrossRefGoogle ScholarPubMed
Li, Q, Dhyani, M, Grajo, JR, Sirlin, C, Samir, AE. Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol. 2018; 10(8), 530542.CrossRefGoogle ScholarPubMed
Lee, DH. Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification. Clin Mol Hepatol. 2017; 23(4), 290301.CrossRefGoogle ScholarPubMed
Chartampilas, E. Imaging of nonalcoholic fatty liver disease and its clinical utility. Hormones. 2018; 17(1), 6981.CrossRefGoogle ScholarPubMed
Symonds, ME. Brown adipose tissue growth and development. Scientifica. 2013; 2013, 305763.CrossRefGoogle ScholarPubMed
Darby, JRT, Sorvina, A, Bader, CA, et al. Detecting metabolic differences in fetal and adult sheep adipose and skeletal muscle tissues. J Biophoton. 2019, e201960085. doi: 10.1002/jbio.201960085.Google ScholarPubMed
Ghazanfar, S, Vuocolo, T, Morrison, JL, et al. Gene expression allelic imbalance in ovine brown adipose tissue impacts energy homeostasis. PLoS One. 2017; 12(6), e0180378.CrossRefGoogle ScholarPubMed
Symonds, ME, Pearce, S, Bispham, J, Gardner, DS, Stephenson, T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc. 2004; 63(3), 397403.CrossRefGoogle ScholarPubMed
Sun, L, Yan, J, Sun, L, Velan, SS, Leow, MKS. A synopsis of brown adipose tissue imaging modalities for clinical research. Diabetes Metab. 2017; 43(5), 401410.CrossRefGoogle ScholarPubMed
Symonds, ME, Henderson, K, Elvidge, L, et al. Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. 2012; 161(5), 892898.CrossRefGoogle ScholarPubMed
Rasmussen, JM, Entringer, S, Nguyen, A, et al. Brown adipose tissue quantification in human neonates using water-fat separated MRI. PLoS One. 2013; 8(10), e77907.CrossRefGoogle ScholarPubMed
Ponrartana, S, Aggabao, PC, Chavez, TA, Dharmavaram, NL, Gilsanz, V. Changes in brown adipose tissue and muscle development during infancy. J Pediatr. 2016; 173, 116121.CrossRefGoogle ScholarPubMed
Entringer, S, Rasmussen, J, Cooper, DM, et al. Association between supraclavicular brown adipose tissue composition at birth and adiposity gain from birth to 6 months of age. Pediatr Res. 2017; 82(6), 10171021.CrossRefGoogle ScholarPubMed
Bhanu Prakash, KN, Verma, SK, Yaligar, J, et al. Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. Magma. 2016; 29(2), 277286.CrossRefGoogle ScholarPubMed
Hu, HH, Yin, L, Aggabao, PC, Perkins, TG, Chia, JM, Gilsanz, V. Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI. J Magn Reson Imaging. 2013; 38(4), 885896.CrossRefGoogle Scholar
Khoo, CM, Leow, MK, Sadananthan, SA, et al. Body fat partitioning does not explain the interethnic variation in insulin sensitivity among Asian ethnicity: the Singapore adults metabolism study. Diabetes. 2014; 63(3), 10931102.CrossRefGoogle Scholar
Demerath, EW, Sun, SS, Rogers, N, et al. Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity. 2007; 15(12), 29842993.CrossRefGoogle ScholarPubMed
Després, JP, Lemieux, I, Bergeron, J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscl Thromb Vasc Biol. 2008; 28(6), 10391049.CrossRefGoogle ScholarPubMed
Katzmarzyk, PT, Bray, GA, Greenway, FL, et al. Racial differences in abdominal depot-specific adiposity in white and African American adults. Am J Clin Nutr. 2010; 91(1), 715.CrossRefGoogle ScholarPubMed
Revenga-Frauca, J, González-Gil, EM, Bueno-Lozano, G, et al. Abdominal fat and metabolic risk in obese children and adolescents. J Physiol Biochem. 2009; 65(4), 415420.CrossRefGoogle ScholarPubMed
Sadananthan, SA, Prakash, B, Leow, MK, et al. Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging. 2015; 41(4), 924934.CrossRefGoogle ScholarPubMed
Lee, MJ, Wu, Y, Fried, SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013; 34(1), 111.CrossRefGoogle ScholarPubMed
Walker, GE, Verti, B, Marzullo, P, et al. Deep subcutaneous adipose tissue: a distinct abdominal adipose depot. Obesity. 2007; 15(8), 19331943.CrossRefGoogle ScholarPubMed
Tint, MT, Fortier, MV, Godfrey, KM, et al. Abdominal adipose tissue compartments vary with ethnicity in Asian neonates: growing up in Singapore toward healthy outcomes birth cohort study. Am J Clin Nutr. 2016; 103(5), 13111317.CrossRefGoogle ScholarPubMed
Sadananthan, SA, Tint, MT, Michael, N, et al. Association between early life weight gain and abdominal fat partitioning at 4.5 years is sex, ethnicity, and age dependent. Obesity. 2019; 27(3), 470478.CrossRefGoogle ScholarPubMed
Michael, N, Gupta, V, Sadananthan, SA, et al. Determinants of intramyocellular lipid accumulation in early childhood. Int J Obes. 2020; 44(5), 11411151.CrossRefGoogle ScholarPubMed
Soh, SE, Tint, MT, Gluckman, PD, et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol. 2014; 43(5), 14011409.CrossRefGoogle ScholarPubMed
Wang, PI, Chong, ST, Kielar, AZ, et al. Imaging of pregnant and lactating patients: Part 2, Evidence-based review and recommendations. AJR Am J Roentgenol. 2012; 198(4), 785792.CrossRefGoogle ScholarPubMed
Haris, K, Hedstrom, E, Kording, F, et al. Free-breathing fetal cardiac MRI with doppler ultrasound gating, compressed sensing, and motion compensation. J Magn Reson Imaging. 2019. doi: 10.1002/jmri.26842.Google ScholarPubMed
Kording, F, Schoennagel, BP, de Sousa, MT, et al. Evaluation of a portable doppler ultrasound gating device for fetal cardiac MR imaging: initial results at 1.5T and 3T. Magn Reson Med Sci. 2018; 17(4), 308317.CrossRefGoogle ScholarPubMed
Roy, CW, Seed, M, Macgowan, CK. Accelerated MRI of the fetal heart using compressed sensing and metric optimized gating. Magn Reson Med. 2017; 77(6), 21252135.CrossRefGoogle ScholarPubMed
Holm, MB, Bastani, NE, Holme, AM, et al. Uptake and release of amino acids in the fetal-placental unit in human pregnancies. PLoS One. 2017; 12(10), e0185760.CrossRefGoogle ScholarPubMed
Roy, CW, Seed, M, Kingdom, JC, Macgowan, CK. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson. 2017; 19(1), 29.CrossRefGoogle ScholarPubMed
Goolaub, DS, Roy, CW, Schrauben, E, et al. Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson. 2018; 20(1), 77.CrossRefGoogle ScholarPubMed
Cena, H, Calder, PC. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients. 2020; 12(2): 334.CrossRefGoogle ScholarPubMed
Huth, PJ, Fulgoni, VL, Keast, DR, Park, K, Auestad, N. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the National Health and Nutrition Examination Survey (2003–2006). Nutr J. 2013; 12, 116.CrossRefGoogle Scholar
Scorletti, E, Byrne, CD. Extrahepatic diseases and NAFLD: The Triangular Relationship between NAFLD, type 2-diabetes and dysbiosis. Dig Dis. 2016; 34(Suppl 1), 1118.CrossRefGoogle ScholarPubMed
Mikolasevic, I, Milic, S, Turk Wensveen, T, et al. Nonalcoholic fatty liver disease – A multisystem disease? World J Gastroenterol. 2016; 22(43), 94889505.CrossRefGoogle ScholarPubMed
Li, L, Liu, DW, Yan, HY, Wang, ZY, Zhao, SH, Wang, B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016; 17(6), 510519.CrossRefGoogle ScholarPubMed
Wattacheril, J, Sanyal, AJ. Lean NAFLD: an underrecognized outlier. Curr Hepatol Rep. 2016; 15(2), 134139.CrossRefGoogle ScholarPubMed
Younes, R, Bugianesi, E. NASH in lean individuals. Semin Liver Dis. 2019; 39(1), 8695.CrossRefGoogle ScholarPubMed
Younossi, Z, Anstee, QM, Marietti, M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018; 15(1), 1120.CrossRefGoogle ScholarPubMed
Hohos, NM, Skaznik-Wikiel, ME. High-fat diet and female fertility. Endocrinology. 2017; 158(8), 24072419.CrossRefGoogle ScholarPubMed
Salas-Huetos, A, Bulló, M, Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Human Reprod Update. 2017; 23(4), 371389.CrossRefGoogle ScholarPubMed
Oestreich, AK, Moley, KH. Developmental and transmittable origins of obesity-associated health disorders. Trends Genet. 2017; 33(6), 399407.CrossRefGoogle ScholarPubMed
Sasson, IE, Vitins, AP, Mainigi, MA, Moley, KH, Simmons, RA. Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia. 2015; 58(3), 615624.CrossRefGoogle ScholarPubMed
Lomas-Soria, C, Reyes-Castro, LA, Rodríguez-González, GL, et al. Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J Physiol. 2018; 596(19), 46114628.CrossRefGoogle ScholarPubMed
Sinclair, KJ, Friesen-Waldner, LJ, McCurdy, CM, et al. Quantification of fetal organ volume and fat deposition following in utero exposure to maternal Western Diet using MRI. PLoS One. 2018; 13(2), e0192900.CrossRefGoogle ScholarPubMed
Morrison, JL, Botting, KJ, Darby, JRT, et al. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol. 2018; 596(23), 55355569.CrossRefGoogle ScholarPubMed
Zheng, J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review). Oncol Lett. 2012; 4(6), 11511157.CrossRefGoogle Scholar
Wang, ZJ, Ohliger, MA, Larson, PEZ, et al. Hyperpolarized (13)C MRI: State of the Art and future directions. Radiology. 2019; 291(2), 273284.CrossRefGoogle Scholar
Kurhanewicz, J, Vigneron, DB, Ardenkjaer-Larsen, JH, et al. Hyperpolarized (13)C MRI: path to clinical translation in oncology. Neoplasia. 2019; 21(1), 116.CrossRefGoogle Scholar
Friesen-Waldner, LJ, Sinclair, KJ, Wade, TP, et al. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: a feasibility study in pregnant guinea pigs. J Magn Reson Imaging. 2016; 43(3), 750755.CrossRefGoogle Scholar
Giza, SA, Olmstead, C, McCooeye, DA, et al. Measuring fetal adipose tissue using 3D water-fat magnetic resonance imaging: a feasibility study. J Matern Fetal Neonatal Med. 2020; 33(5), 831837.CrossRefGoogle ScholarPubMed
Hu, HH, Tovar, JP, Pavlova, Z, Smith, ML, Gilsanz, V. Unequivocal identification of brown adipose tissue in a human infant. J Magn Reson Imaging. 2012; 35(4), 938942.CrossRefGoogle Scholar
Izzi-Engbeaya, C, Salem, V, Atkar, RS, Dhillo, WS. Insights into brown adipose tissue physiology as revealed by imaging studies. Adipocyte. 2015; 4(1), 112.CrossRefGoogle ScholarPubMed
Antonacci, MA, McHugh, C, Kelley, M, McCallister, A, Degan, S, Branca, RT. Direct detection of brown adipose tissue thermogenesis in UCP1−/− mice by hyperpolarized (129)Xe MR thermometry. Sci Rep. 2019; 9(1), 14865.CrossRefGoogle Scholar
Branca, RT, Zhang, L, Warren, WS, et al. In vivo noninvasive detection of brown adipose tissue through intermolecular zero-quantum MRI. PLoS One. 2013; 8(9), e74206.CrossRefGoogle ScholarPubMed
Stojanovska, J, Lumeng, CN, Griffin, C, et al. Water-fat magnetic resonance imaging quantifies relative proportions of brown and white adipose tissues: ex-vivo experiments. J Med Imaging. 2018; 5(2), 024007.CrossRefGoogle Scholar
Hernando, D, Sharma, SD, Aliyari Ghasabeh, M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med. 2017; 77(4), 15161524.CrossRefGoogle ScholarPubMed
Peterson, P, Månsson, S. Simultaneous quantification of fat content and fatty acid composition using MR imaging. Magn Reson Med. 2013; 69(3), 688697.CrossRefGoogle ScholarPubMed
Hu, HH, Smith, DL Jr, Nayak, KS, Goran, MI, Nagy, TR. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. J Magn Reson Imaging. 2010; 31(5), 11951202.CrossRefGoogle ScholarPubMed
Hooper, SB, Kitchen, MJ, Siew, ML, et al. Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging. Clin Exp Pharmacol Physiol. 2009; 36(1), 117125.CrossRefGoogle ScholarPubMed
Hooper, SB, Kitchen, MJ, Wallace, MJ, et al. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 2007; 21(12), 33293337.CrossRefGoogle ScholarPubMed
Hooper, SB, Polglase, GR, Roehr, CC. Cardiopulmonary changes with aeration of the newborn lung. Paediatr Respir Rev. 2015; 16(3), 147150.Google ScholarPubMed
Hooper, SB, Te Pas, AB, Kitchen, MJ. Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016; 101(3), F266F271.CrossRefGoogle ScholarPubMed
Leong, AF, Buckley, GA, Paganin, DM, Hooper, SB, Wallace, MJ, Kitchen, MJ. Real-time measurement of alveolar size and population using phase contrast x-ray imaging. Biomed Opt Express. 2014; 5(11), 40244038.CrossRefGoogle ScholarPubMed
Siew, ML, Te Pas, AB, Wallace, MJ, et al. Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth. J Appl Physiol. 2009; 106(5), 14871493.CrossRefGoogle ScholarPubMed
Siew, ML, Wallace, MJ, Allison, BJ, et al. The role of lung inflation and sodium transport in airway liquid clearance during lung aeration in newborn rabbits. Pediatr Res. 2013; 73(4 Pt 1), 443449.CrossRefGoogle ScholarPubMed
Siew, ML, Wallace, MJ, Kitchen, MJ, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol. 2009; 106(6), 18881895.CrossRefGoogle ScholarPubMed
Lang, JA, Pearson, JT, te Pas, AB, et al. Ventilation/perfusion mismatch during lung aeration at birth. J Appl Physiol. 2014; 117(5), 535543.CrossRefGoogle ScholarPubMed
Dekker, J, Hooper, SB, Croughan, MK, et al. Increasing respiratory effort with 100% oxygen during resuscitation of preterm rabbits at birth. Front Pediatr. 2019; 7, 427.CrossRefGoogle ScholarPubMed
Te Pas, AB, Kitchen, MJ, Lee, K, et al. Optimizing lung aeration at birth using a sustained inflation and positive pressure ventilation in preterm rabbits. Pediatr Res. 2016; 80(1), 8591.CrossRefGoogle ScholarPubMed
Dekker, J, Martherus, T, Lopriore, E, et al. The effect of initial high vs. low FiO2 on breathing effort in preterm infants at birth: a randomized controlled trial. Front Pediatr. 2019; 7, 504.CrossRefGoogle ScholarPubMed
Crawshaw, JR, Kitchen, MJ, Binder-Heschl, C, et al. Laryngeal closure impedes non-invasive ventilation at birth. Arch Dis Child Fetal Neonatal Ed. 2018; 103(2), F112F119.CrossRefGoogle ScholarPubMed
Croton, LCP, Morgan, KS, Paganin, DM, et al. In situ phase contrast X-ray brain CT. Sci Rep. 2018; 8(1), 11412.CrossRefGoogle ScholarPubMed
Langheinrich, AC, Vorman, S, Seidenstucker, J, et al. Quantitative 3D micro-CT imaging of the human feto-placental vasculature in intrauterine growth restriction. Placenta. 2008; 29(11), 937941.CrossRefGoogle ScholarPubMed
Rennie, MY, Whiteley, KJ, Kulandavelu, S, Adamson, SL, Sled, JG. 3D visualisation and quantification by microcomputed tomography of late gestational changes in the arterial and venous feto-placental vasculature of the mouse. Placenta. 2007; 28(8–9), 833840.CrossRefGoogle ScholarPubMed
Aughwane, R, Schaaf, C, Hutchinson, JC, et al. Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density. Placenta. 2019; 88, 3643.CrossRefGoogle ScholarPubMed
Blank, DA, Rogerson, SR, Kamlin, COF, et al. Lung ultrasound during the initiation of breathing in healthy term and late preterm infants immediately after birth, a prospective, observational study. Resuscitation. 2017; 114, 5965.CrossRefGoogle ScholarPubMed
Chen, H, Ni, D, Qin, J, et al. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform. 2015; 19(5), 16271636.CrossRefGoogle ScholarPubMed
Khalili, N, Lessmann, N, Turk, E, et al. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn Reson Imaging. 2019. doi: 10.1016/j.mri.2019.05.020.CrossRefGoogle ScholarPubMed
Kuklisova-Murgasova, M, Quaghebeur, G, Rutherford, MA, Hajnal, JV, Schnabel, JA. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Anal. 2012; 16(8), 15501564.CrossRefGoogle ScholarPubMed