Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T21:55:41.811Z Has data issue: false hasContentIssue false

Fetal programming by androgen excess impairs liver lipid content and PPARg expression in adult rats

Published online by Cambridge University Press:  19 July 2021

Aimé Florencia Silva*
Affiliation:
Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
Giselle Adriana Abruzzese
Affiliation:
Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
María José Ferrer
Affiliation:
Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
María Florencia Heber
Affiliation:
Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
Silvana Rocío Ferreira
Affiliation:
Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
Gloria Edith Cerrone
Affiliation:
Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Junín 954, C1113 AAD, Ciudad Autónoma de Buenos Aires, Argentina
Alicia Beatriz Motta
Affiliation:
Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
*
Address for correspondence: Aimé Florencia Silva, Center of Pharmacological and Botanical Studies, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, CP1121, Buenos Aires, Argentina. Email: [email protected]

Abstract

It is known that prenatal hyperandrogenization induces alterations since early stages of life, contributing to the development of polycystic ovary syndrome affecting the reproductive axis and the metabolic status, thus promoting others associated disorders, such as dyslipidemia, insulin resistance, liver dysfunction, and even steatosis. In this study, we aimed to evaluate the effect of fetal programming by androgen excess on the hepatic lipid content and metabolic mediators at adult life. Pregnant rats were hyperandrogenized with daily subcutaneous injections of 1 mg of free testosterone from days 16 to 19 of pregnancy. The prenatally hyperandrogenized (PH) female offspring displayed two phenotypes: irregular ovulatory phenotype (PHiov) and anovulatory phenotype (PHanov), with different metabolic and endocrine features. We evaluated the liver lipid content and the main aspect of the balance between fatty acid (FA) synthesis and oxidation. We investigated the status of the peroxisomal proliferator-activated receptors (PPARs) alpha and gamma, which act as lipid mediators, and the adipokine chemerin, one marker of liver alterations. We found that prenatal hyperandrogenization altered the liver lipid profile with increased FAs levels in the PHanov phenotype and decreased cholesterol content in the PHiov phenotype. FA metabolism was also disturbed, including decreased mRNA and protein PPARgamma levels and impaired gene expression of the main enzymes involved in lipid metabolism. Moreover, we found low chemerin protein levels in both PH phenotypes. In conclusion, these data suggest that prenatal hyperandrogenization exerts a negative effect on the liver and alters lipid content and metabolic mediators’ expression at adult age.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marciniak, A, Patro-Małysza, J, Kimber-Trojnar, Ż, et al. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol. 2017; 56, 133138.10.1016/j.tjog.2017.01.001CrossRefGoogle ScholarPubMed
Saffery, R, Novakovic, B. Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence? Acta Obstet Gynecol Scand. 2014; 93, 10901098.10.1111/aogs.12431CrossRefGoogle ScholarPubMed
Trefts, E, Gannon, M, Wasserman, DH. The liver. Curr Biol. 2017; 27, R1147R1151.10.1016/j.cub.2017.09.019CrossRefGoogle ScholarPubMed
Paschos, P, Paletas, K. Non-alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009; 13, 919.Google ScholarPubMed
Kawano, Y, Cohen, DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013; 48, 434441.10.1007/s00535-013-0758-5CrossRefGoogle ScholarPubMed
Ma, W-L, Lai, H-C, Yeh, S, et al. Androgen receptor roles in hepatocellular carcinoma, cirrhosis, and hepatitis. Endocr Relat Cancer. 2014; 21, R165R182.10.1530/ERC-13-0283CrossRefGoogle ScholarPubMed
Marchesini, G, Brizi, M, Morselli-Labate, AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med. 1999; 107, 450455.10.1016/S0002-9343(99)00271-5CrossRefGoogle ScholarPubMed
Diamanti-Kandarakis, E, Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012; 33, 9811030.10.1210/er.2011-1034CrossRefGoogle ScholarPubMed
Sun, M, Maliqueo, M, Benrick, A, et al. Maternal androgen excess reduce placental and fetal weights, increase placental steroidogenesis and leads to long-term health effects in their female offspring. Am J Physiol Endocrinol Metab. 303. Epub ahead of print 9 October 2012. doi: 10.1152/ajpendo.00421.2012.CrossRefGoogle Scholar
Vassilatou, E. Nonalcoholic fatty liver disease and polycystic ovary syndrome. World J Gastroenterol. 2014; 20, 83518363.10.3748/wjg.v20.i26.8351CrossRefGoogle ScholarPubMed
Browning, JD, Horton, JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004; 114, 147152.10.1172/JCI200422422CrossRefGoogle ScholarPubMed
Nguyen, P, Leray, V, Diez, M, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr. 2008; 92, 272283.10.1111/j.1439-0396.2007.00752.xCrossRefGoogle ScholarPubMed
Smith, SA. Peroxisome proliferator-activated receptors and the regulation of mammalian lipid metabolism. Biochem Soc Trans. 2002; 30, 10861090.10.1042/bst0301086CrossRefGoogle ScholarPubMed
Tyagi, S, Gupta, P, Saini, AS, et al. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011; 2, 236240.10.4103/2231-4040.90879CrossRefGoogle ScholarPubMed
Pawlak, M, Lefebvre, P, Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015; 62, 720733.10.1016/j.jhep.2014.10.039CrossRefGoogle ScholarPubMed
Ables, GP. Update on PPARγ and nonalcoholic fatty liver disease. PPAR Res. 2012; 2012, 912351.10.1155/2012/912351CrossRefGoogle ScholarPubMed
Muruganandan, S, Parlee, SD, Rourke, JL, et al. Chemerin, a novel peroxisome proliferator-activated receptor γ (PPARγ) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem. 2011; 286, 2398223995.10.1074/jbc.M111.220491CrossRefGoogle ScholarPubMed
Boutari, C, Perakakis, N, Mantzoros, CS. Association of adipokines with development and progression of nonalcoholic fatty liver disease. Endocrinol Metab. 2018; 33, 3343.10.3803/EnM.2018.33.1.33CrossRefGoogle ScholarPubMed
Lago, F, Gómez, R, Gómez-Reino, JJ, et al. Adipokines as novel modulators of lipid metabolism. Trends Biochem Sci. 2009; 34, 500510.10.1016/j.tibs.2009.06.008CrossRefGoogle ScholarPubMed
Polyzos, SA, Kountouras, J, Mantzoros, CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016; 65, 10621079.10.1016/j.metabol.2015.11.006CrossRefGoogle ScholarPubMed
Bozaoglu, K, Bolton, K, McMillan, J, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007; 148, 46874694.10.1210/en.2007-0175CrossRefGoogle ScholarPubMed
Ademoglu, E, Berberoglu, Z, Carlioglu, A, et al. Higher levels of circulating chemerin in both lean and obese patients with polycystic ovary syndrome. Minerva Ginecol. 2014; 66, 535542.Google ScholarPubMed
Ferland, DJ, Watts, SW. Chemerin: a comprehensive review elucidating the need for cardiovascular research. Pharmacol Res. 2015; 99, 351361.10.1016/j.phrs.2015.07.018CrossRefGoogle ScholarPubMed
Bondue, B, Wittamer, V, Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 2011; 22, 331338.10.1016/j.cytogfr.2011.11.004CrossRefGoogle ScholarPubMed
Helfer, G, Wu, Q-F. Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol. 2018; 238, R79R94.10.1530/JOE-18-0174CrossRefGoogle ScholarPubMed
Abruzzese, GA, Heber, MF, Ferrer, MJ, et al. Effects of in utero androgen excess and metformin treatment on hepatic functions. Mol Cell Endocrinol. 2019; 491, 110416.10.1016/j.mce.2019.03.006CrossRefGoogle ScholarPubMed
Abruzzese, GA, Heber, MF, Ferreira, SR, et al. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism. J Endocrinol. 2016; 230, 6779.10.1530/JOE-15-0471CrossRefGoogle ScholarPubMed
Heber, MF, Ferreira, SR, Vélez, LM, et al. Prenatal hyperandrogenism and lipid profile during different age stages: an experimental study. Fertil Steril. 2013; 99, 551557.10.1016/j.fertnstert.2012.10.017CrossRefGoogle ScholarPubMed
Padmanabhan, V, Salvetti, NR, Matiller, V, et al. Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology. 2014; 155, 36493660.10.1210/en.2014-1266CrossRefGoogle ScholarPubMed
Demissie, M, Lazic, M, Foecking, EM, et al. Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. Am J Physiol-Endocrinol Metab. 2008; 295, E262E268.10.1152/ajpendo.90208.2008CrossRefGoogle ScholarPubMed
Wolf, CJ, Hotchkiss, A, Ostby, JS, et al. Effects of prenatal testosterone propionate on the sexual development of male and female rats: a dose-response study. Toxicol Sci Off J Soc Toxicol. 2002; 65, 7186.10.1093/toxsci/65.1.71CrossRefGoogle ScholarPubMed
Heber, MF, Ferreira, SR, Abruzzese, GA, et al. Metformin improves ovarian insulin signaling alterations caused by fetal programming. J Endocrinol. Epub ahead of print 1 January 2019. doi: 10.1530/JOE-18-0520.CrossRefGoogle Scholar
Chow, JDY, Jones, MEE, Prelle, K, et al. A selective estrogen receptor α agonist ameliorates hepatic steatosis in the male aromatase knockout mouse. J Endocrinol. 2011; 210, 323334.10.1530/JOE-10-0462CrossRefGoogle ScholarPubMed
Bligh, EG, Dyer, WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959; 37, 911917.10.1139/y59-099CrossRefGoogle ScholarPubMed
Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72, 248254.10.1016/0003-2697(76)90527-3CrossRefGoogle ScholarPubMed
Fornes, D, White, V, Higa, R, et al. Sex-dependent changes in lipid metabolism, PPAR pathways and microRNAs that target PPARs in the fetal liver of rats with gestational diabetes. Mol Cell Endocrinol. 2018; 461, 1221.10.1016/j.mce.2017.08.004CrossRefGoogle ScholarPubMed
Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001; 25, 402408.CrossRefGoogle Scholar
Araujo, LCC, Bordin, S, Carvalho, CRO. Reference gene and protein expression levels in two different NAFLD mouse models. Gastroenterol Res Pract. 2020. Epub ahead of print 3 February 2020. doi: 10.1155/2020/1093235.CrossRefGoogle Scholar
Rein-Fischboeck, L, Pohl, R, Haberl, EM, et al. Tubulin alpha 8 is expressed in hepatic stellate cells and is induced in transformed hepatocytes. Mol Cell Biochem. 2017; 428, 161170.10.1007/s11010-016-2926-4CrossRefGoogle ScholarPubMed
Moritz, CP. Tubulin or not tubulin: heading toward total protein staining as loading control in western blots. Proteomics. 17. Epub ahead of print October 2017. doi: 10.1002/pmic.201600189.CrossRefGoogle Scholar
Collins, MA, An, J, Peller, D, et al. Total protein is an effective loading control for cerebrospinal fluid western blots. J Neurosci Methods. 2015; 251, 7282.CrossRefGoogle ScholarPubMed
Nie, X, Li, C, Hu, S, et al. An appropriate loading control for western blot analysis in animal models of myocardial ischemic infarction. Biochem Biophys Rep. 2017; 12, 108113.Google ScholarPubMed
Di Rienzo, J, Casanoves, F, Balzarini, M, et al. InfoStat Versión 2011. https://www.infostat.com.ar/index.php.Google Scholar
Fowden, AL, Forhead, AJ. Endocrine mechanisms of intrauterine programming. Reprod Camb Engl. 2004; 127, 515526.Google ScholarPubMed
Abruzzese, GA, Heber, MF, Campo Verde Arbocco, F, et al. Fetal programming by androgen excess in rats affects ovarian fuel sensors and steroidogenesis. J Dev Orig Health Dis. 2019; 10, 114.10.1017/S2040174419000126CrossRefGoogle ScholarPubMed
Rui, L. Energy metabolism in the liver. Compr Physiol. 2014; 4, 177197.10.1002/cphy.c130024CrossRefGoogle ScholarPubMed
Shen, M, Shi, H. Sex hormones and their receptors regulate liver energy homeostasis. Int J Endocrinol. 2015. Epub ahead of print 2015. doi: 10.1155/2015/294278.CrossRefGoogle Scholar
Grossmann, M, Wierman, ME, Angus, P, et al. Reproductive endocrinology of nonalcoholic fatty liver disease. Endocr Rev. 2019; 40, 417446.10.1210/er.2018-00158CrossRefGoogle ScholarPubMed
Lazic, M, Aird, F, Levine, JE, et al. Prenatal androgen treatment alters body composition and glucose homeostasis in male rats. J Endocrinol. 2011; 208, 293300.Google ScholarPubMed
Matsusue, K, Haluzik, M, Lambert, G, et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003; 111, 737747.10.1172/JCI200317223CrossRefGoogle ScholarPubMed
Wang, Y, Nakajima, T, Gonzalez, FJ, et al. PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci. 21. Epub ahead of print 17 March 2020. doi: 10.3390/ijms21062061.CrossRefGoogle Scholar
Bougarne, N, Weyers, B, Desmet, SJ, et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev. 2018; 39, 760802.10.1210/er.2018-00064CrossRefGoogle ScholarPubMed
Pawlak, M, Baugé, E, Bourguet, W, et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology. 2014; 60, 15931606.10.1002/hep.27297CrossRefGoogle ScholarPubMed
Contreras, AV, Torres, N, Tovar, AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation12. Adv Nutr. 2013; 4, 439452.10.3945/an.113.003798CrossRefGoogle Scholar
Strable, MS, Ntambi, JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol. 2010; 45, 199214.10.3109/10409231003667500CrossRefGoogle ScholarPubMed
Brownsey, RW, Boone, AN, Elliott, JE, et al. Regulation of acetyl-CoA carboxylase. Biochem Soc Trans. 2006; 34, 223227.10.1042/BST0340223CrossRefGoogle ScholarPubMed
Silbernagel, G, Kovarova, M, Cegan, A, et al. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Clin Endocrinol Metab. 2012; 97, E2288E2292.CrossRefGoogle Scholar
Nordlie, RC, Foster, JD, Lange, AJ. Regulation of glucose production by the liver. Annu Rev Nutr. 1999; 19, 379406.CrossRefGoogle ScholarPubMed
Kim, H, Ahn, Y. Role of peroxisome proliferator-activated receptor-γ in the glucose-sensing apparatus of liver and β-cells. Diabetes. 2004; 53, S60S65.10.2337/diabetes.53.2007.S60CrossRefGoogle ScholarPubMed
Kallwitz, ER, McLachlan, A, Cotler, SJ. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J Gastroenterol. 2008; 14, 2228.CrossRefGoogle ScholarPubMed
White, MF. IRS proteins and the common path to diabetes. Am J Physiol-Endocrinol Metab. 2002; 283, E413E422.CrossRefGoogle ScholarPubMed
Rencurel, F, Waeber, G, Antoine, B, et al. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J. 1996; 314, 903909.10.1042/bj3140903CrossRefGoogle ScholarPubMed
Liang, H, Ward, WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006; 30, 145151.CrossRefGoogle ScholarPubMed
Fernandez-Marcos, PJ, Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis1234. Am J Clin Nutr. 2011; 93, 884S890S.CrossRefGoogle Scholar
Roe, A, Hillman, J, Butts, S, et al. Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS. J Clin Endocrinol Metab. 2014; 99, E841E847.CrossRefGoogle ScholarPubMed
Ioannou, GN. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab. 2016; 27, 8495.Google Scholar
Chen, L, Chen, X-W, Huang, X, et al. Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 2019; 62, 14201458.CrossRefGoogle ScholarPubMed
Goralski, KB, McCarthy, TC, Hanniman, EA, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007; 282, 2817528188.CrossRefGoogle ScholarPubMed
Mishra, S, Bharati, J, Bharti, M, et al. Adipokines as metabolic modulators of ovarian functions in livestock: a mini-review. J Adv Vet Anim Res. 2016; 3, 206.CrossRefGoogle Scholar
Mattern, A, Zellmann, T, Beck-Sickinger, AG. Processing, signaling, and physiological function of chemerin. IUBMB Life. 2014; 66, 1926.CrossRefGoogle ScholarPubMed
Horn, P, von Loeffelholz, C, Forkert, F, et al. Low circulating chemerin levels correlate with hepatic dysfunction and increased mortality in decompensated liver cirrhosis. Sci Rep. 8. Epub ahead of print 18 June 2018. doi: 10.1038/s41598-018-27543-6.CrossRefGoogle Scholar
Alfadda, AA, Sallam, RM, Chishti, MA, et al. Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism. Mol Cells. 2012; 33, 591596.CrossRefGoogle ScholarPubMed
Kłusek-Oksiuta, M, Bialokoz-Kalinowska, I, Tarasów, E, et al. Chemerin as a novel non-invasive serum marker of intrahepatic lipid content in obese children. Ital J Pediatr. 40. Epub ahead of print 17 November 2014. doi: 10.1186/s13052-014-0084-4.CrossRefGoogle Scholar