Hostname: page-component-6bf8c574d5-n2sc8 Total loading time: 0 Render date: 2025-03-04T13:33:05.178Z Has data issue: false hasContentIssue false

Effects of maternal restraint stress on offspring intestinal microbiota and adipogenesis: insights from in vivo and in vitro studies

Published online by Cambridge University Press:  28 February 2025

Takako Kondo*
Affiliation:
Department of Health and Nutrition, Faculty of Health and Sciences, Nagoya Women’s University, Nagoya-shi, Aichi, Japan Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
Yuta Tsunematsu
Affiliation:
Graduate School of Bioagricultural Sciences Department of Applied Biosciences, Nagoya University, Nagoya, Aichi, Japan
Yu Aoki
Affiliation:
Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
Noriyuki Miyoshi
Affiliation:
Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
Mitsuo Iinuma
Affiliation:
Department of Pediatric Dentistry Division of Oral Structure, Asahi University, Gifu, Japan
Kumiko Yamada
Affiliation:
Department of Health and Nutrition, Faculty of Health and Sciences, Nagoya Women’s University, Nagoya-shi, Aichi, Japan
*
Corresponding author: Takako Kondo; Email: [email protected]

Abstract

The maternal restraint stress animal model is based on a long-term stress paradigm administered to pregnant maternal animals, and these offspring have been shown to exhibit a variety of biochemical defects including obesity. This study aimed to investigate whether maternal restraint stress affects obesity-associated changes in offspring intestinal microbiota and the adipogenic differentiation of mesenchymal stem cells (MSCs).

Pregnant mice were subjected to restraint stress three times daily from gestational Day12 to delivery. Changes in the composition of the intestinal microbiota of mothers (during pregnancy and lactation) and their lactating offspring exposed to maternal restraint stress were analyzed using next-generation sequencing. Maternal stress altered the maternal microbiota, with reduced Bacteroidetes and increased Firmicutes. While similar trends were observed in offspring, these changes were not statistically significant. However, maternal stress notably reduced microbial diversity in the offspring’s intestinal microbiota. Bone marrow-derived MSCs from offspring at weaning were analyzed for adipogenic transcription factors and hormone receptor expression using quantitative PCR. Maternal stress enhanced the adipogenic phenotype of offspring MSCs, as evidenced by increased expression of adipogenic markers (PPARγ, leptin receptor) and a reduced osteogenic phenotype. In vitro induction further confirmed the higher adipocyte differentiation potential in stressed offspring MSCs compared to controls.

Our results revealed that maternal restraint stress altered the maternal intestinal microbiota, leading to reduced microbial diversity in offspring, predisposing their MSCs toward an adipocyte phenotype. These finding suggest that modulating the intestinal microbiota of stressed pregnant women may improve the susceptibility to obesity in their children.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonson, AM, Evans, MV, Galley, JD, et al. Unique maternal immune and functional microbial profiles during prenatal stress. Sci. Rep. 2020; 10(1), 20288. DOI: 10.1038/s41598-020-77265-x.CrossRefGoogle ScholarPubMed
Eberle, C, Fasig, T, Bruseke, F, et al. Impact of maternal prenatal stress by glucocorticoids on metabolic and cardiovascular outcomes in their offspring: a systematic scoping review. PLoS One. 2021; 16(1), e0245386. DOI: 10.1371/journal.pone.0245386.CrossRefGoogle ScholarPubMed
Entringer, S. Prenatal stress exposure and fetal programming of complex phenotypes: interactive effects with multiple risk factors, Neurosci. Biobehav. Rev. 2020; 117, 34. DOI: 10.1016/j.neubiorev.2020.04.002.CrossRefGoogle Scholar
Brunton, PJ. Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring. Reproduction. 2013; 146(5), 175189. DOI: 10.1530/REP-13-0258.CrossRefGoogle ScholarPubMed
Di Simone, N, Santamaria Ortiz, A, Specchia, M et al. Recent insights on the maternal microbiota: impact on pregnancy outcomes. Front. Immunol. 2020; 11, 28202. DOI: 10.3389/fimmu.2020.528202.CrossRefGoogle ScholarPubMed
Ferguson, J. Maternal microbial molecules affect offspring health. Science. 2020; 367(6481), 978979. DOI: 10.1126/science.aba7673.CrossRefGoogle ScholarPubMed
Joseph, DN, Whirledge, S. Stress and the HPA axis: balancing homeostasis and fertility. Int. J. Mol. Sci. 2017; 18(10), 18. DOI: 10.3390/ijms18102224.CrossRefGoogle ScholarPubMed
Ren, Y, Su, S, Liu, X et al. Microbiota-derived short-chain fatty acids promote BMP signaling by inhibiting histone deacetylation and contribute to dentinogenic differentiation in murine incisor regeneration. Stem Cells Dev. 2020; 29(18), 12011214. DOI: 10.1089/scd.2020.0057.CrossRefGoogle ScholarPubMed
Xiao, E, He, L, Wu, Q et al. Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation. Stem Cell Res Ther. 2017; 8(1), 213. DOI: 10.1186/s13287-017-0670-7.CrossRefGoogle ScholarPubMed
Gong, M, Antony, S, Sakurai, R, et al. Bone marrow mesenchymal stem cells of the intrauterine growth-restricted rat offspring exhibit enhanced adipogenic phenotype. Int. J. Obes. (Lond.). 2016; 40(11), 40 1768–1775. DOI: 10.1038/ijo.2016.157.CrossRefGoogle ScholarPubMed
Kimura, I, Ozawa, K, Inoue, D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013; 4(1), 4,1829. DOI: 10.1038/ncomms2852.CrossRefGoogle ScholarPubMed
Iván, J, Major, E, Sipos, A, et al. The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev. 2017; 26(23), 17241733. DOI: 10.1089/scd.2017.0035.CrossRefGoogle ScholarPubMed
Juarez, YR, Quiroga, S, Prochnik, A, et al. Influence of prenatal stress on metabolic abnormalities induced by postnatal intake of a high-fat diet in BALB/c mice. J. Dev. Orig. Health Dis. 2021; 12(5), 721730. DOI: 10.1017/S2040174420000987.CrossRefGoogle ScholarPubMed
Azuma, K, Furuzawa, M, Fujiwara, S, et al. Effects of active mastication on chronic stress-induced bone loss in mice. Int. J. Med. Sci. 2015; 12(12), 952957. DOI: 10.7150/ijms.13298.CrossRefGoogle ScholarPubMed
Kondo, T, Saigo, S, Ugawa, S, et al. Prebiotic effect of fructo-oligosaccharides on the inner ear of DBA/2 J mice with early-onset progressive hearing loss. J. Nutr. Biochem. 2020; 75, 108247. DOI: 10.1016/j.jnutbio.2019.108247.CrossRefGoogle ScholarPubMed
Kondo, T, Johnson, SA, Yoder, MC, et al. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 2005; 102(13), 47894794. DOI: 10.1073/pnas.0408239102.CrossRefGoogle ScholarPubMed
Kondo, T, Matsuoka, AJ, Shimomura, A, et al. Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem Cells. 2011; 29(5), 836846. DOI: 10.1002/stem.624.CrossRefGoogle ScholarPubMed
Karl, JP, Hatch, AM, Arcidiacono, SM et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 2018; 9, 2013. DOI: 10.3389/fmicb.2018.02013.CrossRefGoogle ScholarPubMed
Ley, RE, Turnbaugh, PJ, Klein, S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122), 10221023. DOI: 10.1038/4441022a.CrossRefGoogle ScholarPubMed
Grigor’eva, IN. Gallstone disease, obesity and the firmicutes/Bacteroidetes ratio as a possible biomarker of gut dysbiosis. J Pers Med.2020. 2021; 11(1), 13. DOI: 10.3390/jpm11010013.Google Scholar
Omatsu, Y, Seike, M, Sugiyama, T, et al. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature. 2014; 508(7497), 536540. DOI: 10.1038/nature13071.CrossRefGoogle ScholarPubMed
Chalfun, G, Reis, MM, de Oliveira, MBG et al. Perinatal stress and methylation of the NR3C1 gene in newborns: systematic review. Ciba F Symp. 2022; 17(9), 10031019. DOI: 10.1080/15592294.2021.1980691.Google ScholarPubMed
Lima, RPA, Ribeiro, MR, de Farias Lima, KQ et al. Methylation profile of the ADRB3 gene and its association with lipid profile and nutritional status in adults. Biol. Res. 2019; 52(1), 21. DOI: 10.1186/s40659-019-0226-7.CrossRefGoogle ScholarPubMed
Younge, N, McCann, JR, Ballard, J, et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight. 2019; 44(19), e127806. DOI: 10.1172/jci.insight.127806.CrossRefGoogle Scholar
Xu, D, Zhou, S, Liu, Y, et al. Complement in breast milk modifies offspring gut microbiota to promote infant health. Cell. 2024; 187(3), 750763. DOI: 10.1016/j.cell.2023.12.019.CrossRefGoogle ScholarPubMed
Goodrich, JK, Waters, JL, Poole, AC, et al. Human genetics shape the gut microbiome. Cell. 2014; 159(4), 789799. DOI: 10.1016/j.cell.2014.09.053.CrossRefGoogle ScholarPubMed
Wu, GD, Chen, J, Hoffmann, C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052), 105108. DOI: 10.1126/science.1208344.CrossRefGoogle ScholarPubMed
Walters, WA, Xu, Z, Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014; 588(22), 42234233. DOI: 10.1016/j.febslet.2014.09.039.CrossRefGoogle ScholarPubMed
Liu, MJ, Yang, JY, Yan, ZH et al. Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clin Nutr. 2022; 41(10), 23332344. DOI: 10.1016/j.clnu.2022.08.029.CrossRefGoogle ScholarPubMed
Ahmad, A, Yang, W, Chen, G, et al. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One. 2019; 14(12), e0226372. DOI: 10.1371/journal.pone.0226372.CrossRefGoogle ScholarPubMed
Aatsinki, AK, Keskitalo, A, Laitinen, V, et al. Maternal prenatal psychological distress and hair cortisol levels associate with infant fecal microbiota composition at 2.5 months of age. Psychoneuroendocrino. 2020; 119, 104754. DOI: 10.1016/j.psyneuen.2020.104754.CrossRefGoogle ScholarPubMed
Takeuchi, T, Kameyama, K, Miyauchi, E, et al. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab. 2023; 35(2), 361–375, e369. DOI: 10.1016/j.cmet.2022.12.013 .CrossRefGoogle ScholarPubMed
Yue, R, Zhou, BO, Shimada, IS, et al. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016; 18(6), 782796. DOI: 10.1016/j.stem.2016.02.015.CrossRefGoogle ScholarPubMed
Baryawno, N, Przybylski, D, Kowalczyk, MS, et al. A cellular taxonomy of the bone marrow stroma in homeostasis and Leukemia. Cell. 2019; 177(7), 1915–1932, e1916. DOI: 10.1016/j.cell.2019.04.040 .CrossRefGoogle ScholarPubMed
Baccin, C, Al-Sabah, J, Velten, L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 2020; 22(1), 3848. DOI: 10.1038/s41556-019-0439-6.CrossRefGoogle ScholarPubMed
Kimura, I, Miyamoto, J, Kitano, RO et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science. 2020; 367(6481), 6481. DOI: 10.1126/science.aaw8429.CrossRefGoogle ScholarPubMed
Maltz, RM, Keirsey, J, Kim, SC, et al. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids. PLoS One. 2018; 13(5), e0196961. DOI: 10.1371/journal.pone.0196961.CrossRefGoogle ScholarPubMed
Tamashiro, KL, Terrillion, CE, Hyun, J, et al. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009; 58(5), 11161125. DOI: 10.2337/db08-1129.CrossRefGoogle ScholarPubMed