Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T05:27:28.694Z Has data issue: false hasContentIssue false

Antenatal glucocorticoids: where are we after forty years?

Published online by Cambridge University Press:  03 December 2014

C. J. D. McKinlay
Affiliation:
Liggins Institute, The University of Auckland, Auckland, New Zealand
S. R. Dalziel
Affiliation:
Children’s Emergency Department, Starship Children’s Health, Auckland, New Zealand
J. E. Harding*
Affiliation:
Liggins Institute, The University of Auckland, Auckland, New Zealand
*
*Address for correspondence: Professor J. E. Harding, Liggins Institute, The University of Auckland, Private Bag 92019, Victoria St West, Auckland 1142, New Zealand. (Email [email protected])

Abstract

Since their introduction more than forty years ago, antenatal glucocorticoids have become a cornerstone in the management of preterm birth and have been responsible for substantial reductions in neonatal mortality and morbidity. Clinical trials conducted over the past decade have shown that these benefits may be increased further through administration of repeat doses of antenatal glucocorticoids in women at ongoing risk of preterm and in those undergoing elective cesarean at term. At the same time, a growing body of experimental animal evidence and observational data in humans has linked fetal overexposure to maternal glucocorticoids with increased risk of cardiovascular, metabolic and other disorders in later life. Despite these concerns, and somewhat surprisingly, there has been little evidence to date from randomized trials of longer-term harm from clinical doses of synthetic glucocorticoids. However, with wider clinical application of antenatal glucocorticoid therapy there has been greater need to consider the potential for later adverse effects. This paper reviews current evidence for the short- and long-term health effects of antenatal glucocorticoids and discusses the apparent discrepancy between data from randomized clinical trials and other studies.

Type
Review
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. National Institutes of Health. Effect of corticosteroids for fetal maturation on perinatal outcomes. Consens Statement. 1994; 12, 124.Google Scholar
2. Roberts, D, Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006; CD004454.CrossRefGoogle ScholarPubMed
3. Liggins, GC, Howie, RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972; 50, 515525.CrossRefGoogle ScholarPubMed
4. Jobe, AH, Mitchell, BR, Gunkel, JH. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. Am J Obstet Gynecol. 1993; 168, 508513.CrossRefGoogle ScholarPubMed
5. Sen, S, Reghu, A, Ferguson, SD. Efficacy of a single dose of antenatal steroid in surfactant-treated babies under 31 weeks’ gestation. J Matern Fetal Neonatal Med. 2002; 12, 298303.CrossRefGoogle ScholarPubMed
6. Kari, MA, Hallman, M, Eronen, M, et al. Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics. 1994; 93, 730736.Google ScholarPubMed
7. Andrews, EB, Marcucci, G, White, A, Long, W. Associations between use of antenatal corticosteroids and neonatal outcomes within the Exosurf Neonatal Treatment Investigational New Drug Program. Am J Obstet Gynecol. 1995; 173, 290295.CrossRefGoogle ScholarPubMed
8. Stutchfield, P, Whitaker, R, Russell, I. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ. 2005; 331, 662.CrossRefGoogle ScholarPubMed
9. Ahmed, MR, Sayed Ahmed, WA, Mohammed, TY. Antenatal steroids at 37 weeks, does it reduce neonatal respiratory morbidity? A randomized trial. J Matern Fetal Neonatal Med. 2014; September 22, 15 [Epud ahead of print].Google Scholar
10. Porto, AM, Coutinho, IC, Correia, JB, Amorim, MM. Effectiveness of antenatal corticosteroids in reducing respiratory disorders in late preterm infants: randomised clinical trial. BMJ. 2011; 342. d1696.CrossRefGoogle ScholarPubMed
11. Roberts, D. Antenatal corticosteroids to reduce neonatal morbidity and mortality. 2010. Royal College of Obstetricians and Gynaecologists: London, UK.Google Scholar
12. Aiken, CEM, Fowden, AL, Smith, GCS. Antenatal glucocorticoids prior to cesarean delivery at term. JAMA Pediatr. 2014; 168, 507508.CrossRefGoogle ScholarPubMed
13. Reynolds, R, Seckl, J. Antenatal glucocorticoid treatment: are we doing harm to term babies? J Clin Endocrinol Metab. 2012; 97, 34573459.CrossRefGoogle ScholarPubMed
14. Stutchfield, PR, Whitaker, R, Gliddon, AE, et al. Behavioural, educational and respiratory outcomes of antenatal betamethasone for term caesarean section (ASTECS trial). Arch Dis Child Fetal Neonatal Ed. 2013; 98, F195F200.CrossRefGoogle ScholarPubMed
15. Khazardoust, SJP, Salmanian, B, Zandevakil, F, et al. A clinical randomized trial on endocervical inflammatory cytokines and betamethasone in prime-gravid pregnant women at risk of preterm labor. Iran J Immunol. 2012; 9, 199207.Google ScholarPubMed
16. Abbasi, S, Oxford, C, Gerdes, J, Sehdev, H, Ludmir, J. Antenatal corticosteroids prior to 24 weeks’ gestation and neonatal outcome of extremely low birth weight infants. Am J Perinatol. 2010; 27, 6166.CrossRefGoogle ScholarPubMed
17. Costeloe, K, Hennessy, E, Gibson, A, Marlow, N, Wilkinson, AR. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics. 2000; 106, 659671.CrossRefGoogle ScholarPubMed
18. Foix-L’Helias, L, Marret, S, Ancel, PY, et al. Impact of the use of antenatal corticosteroids on mortality, cerebral lesions and 5-year neurodevelopmental outcomes of very preterm infants: the EPIPAGE cohort study. BJOG. 2008; 115, 275282.CrossRefGoogle ScholarPubMed
19. Manktelow, BN, Lal, MK, Field, DJ, Sinha, SK. Antenatal corticosteroids and neonatal outcomes according to gestational age: a cohort study. Arch Dis Child Fetal Neonatal Ed. 2010; 95, F95F98.CrossRefGoogle ScholarPubMed
20. Wong, D, Abdel-Latif, M, Kent, A. Antenatal steroid exposure and outcomes of very premature infants: a regional cohort study. Arch Dis Child Fetal Neonatal Ed. 2014; 99, F12F20.CrossRefGoogle ScholarPubMed
21. Ballard, PL, Ertsey, R, Gonzales, LW, Gonzales, J. Transcriptional regulation of human pulmonary surfactant proteins SP-B and SP-C by glucocorticoids. Am J Respir Cell Mol Biol. 1996; 14, 599607.CrossRefGoogle ScholarPubMed
22. Liley, HG, White, RT, Warr, RG, et al. Regulation of messenger RNAs for the hydrophobic surfactant proteins in human lung. J Clin Invest. 1989; 83, 11911197.CrossRefGoogle ScholarPubMed
23. Willet, KE, Jobe, AH, Ikegami, M, Kovar, J, Sly, PD. Lung morphometry after repetitive antenatal glucocorticoid treatment in preterm sheep. Am J Respir Crit Care Med. 2001; 163, 14371443.CrossRefGoogle ScholarPubMed
24. Harding, JE, Pang, J, Knight, DB, Liggins, GC. Do antenatal corticosteroids help in the setting of preterm rupture of membranes? Am J Obstet Gynecol. 2001; 184, 131139.CrossRefGoogle ScholarPubMed
25. Yoo, HS, Chang, YS, Kim, JK, et al. Antenatal betamethasone attenuates intrauterine infection-aggravated hyperoxia-induced lung injury in neonatal rats. Pediatr Res. 2013; 73, 726733.CrossRefGoogle ScholarPubMed
26. Khazardoust, S, Javadian, P, Salmanian, B, et al. A clinical randomized trial on endocervical inflammatory cytokines and betamethasone in prime-gravid pregnant women at risk of preterm labor. Iran J Immunol. 2012; 9, 199207.Google ScholarPubMed
27. Ahn, HM, Park, EA, Cho, SJ, Kim, YJ, Park, HS. The association of histological chorioamnionitis and antenatal steroids on neonatal outcome in preterm infants born at less than thirty-four weeks’ gestation. Neonatology. 2012; 102, 259264.CrossRefGoogle ScholarPubMed
28. Collins, JJ, Kunzmann, S, Kuypers, E, et al. Antenatal glucocorticoids counteract LPS changes in TGF-beta pathway and caveolin-1 in ovine fetal lung. Am J Physiol Lung Cell Mol Physiol. 2013; 304, L438L444.CrossRefGoogle ScholarPubMed
29. Kuypers, E, Jellema, RK, Ophelders, DR, et al. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep. PLoS One. 2013; 8, e81644.CrossRefGoogle ScholarPubMed
30. Ballabh, P, Lo, ES, Kumari, J, et al. Pharmacokinetics of betamethasone in twin and singleton pregnancy. Clin Pharmacol Ther. 2002; 71, 3945.CrossRefGoogle ScholarPubMed
31. Della Torre, M, Hibbard, JU, Jeong, H, Fischer, JH. Betamethasone in pregnancy: influence of maternal body weight and multiple gestation on pharmacokinetics. Am J Obstet Gynecol. 2010; 203, 254.e1254.e12.CrossRefGoogle ScholarPubMed
32. Gyamfi, C, Mele, L, Wapner, RJ, et al. The effect of plurality and obesity on betamethasone concentrations in women at risk for preterm delivery. Am J Obstet Gynecol. 2010; 203, 219.e1219.e5.CrossRefGoogle ScholarPubMed
33. Edwards, A, Baker, LS, Wallace, EM. Changes in fetoplacental vessel flow velocity waveforms following maternal administration of betamethasone. Ultrasound Obst Gyn. 2002; 20, 240244.CrossRefGoogle ScholarPubMed
34. Edwards, A, Baker, LS, Wallace, EM. Changes in umbilical artery flow velocity waveforms following maternal administration of betamethasone. Placenta. 2003; 24, 1216.CrossRefGoogle ScholarPubMed
35. Wallace, EM, Baker, LS. Effect of antenatal betamethasone administration on placental vascular resistance. Lancet. 1999; 353, 14041407.CrossRefGoogle ScholarPubMed
36. Miller, SL, Supramaniam, VG, Jenkin, G, Walker, DW, Wallace, EM. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am J Obstet Gynecol. 2009; 201, 613.e1613.e8.CrossRefGoogle ScholarPubMed
37. Miller, SL, Chai, M, Loose, J, et al. The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus. Endocrinology. 2007; 148, 12881295.CrossRefGoogle ScholarPubMed
38. Chang, YL, Chang, SD, Chao, AS, et al. Fetal hemodynamic changes following maternal betamethasone administration in monochorionic twin pregnancies featuring one twin with selective growth restriction and abnormal umbilical artery Doppler. J Obstet Gynecol Res. 2011; 37, 16711676.CrossRefGoogle ScholarPubMed
39. Torrance, HL, Derks, JB, Scherjon, SA, Wijnberger, LD, Visser, GH. Is antenatal steroid treatment effective in preterm IUGR fetuses? Acta Obstet Gynecol Scand. 2009; 88, 10681073.CrossRefGoogle ScholarPubMed
40. Hodges, RJ, Wallace, EM. Mending a growth-restricted fetal heart: should we use glucocorticoids? J Matern Fetal Neonatal Med. 2012; 25, 21492153.CrossRefGoogle ScholarPubMed
41. Morrison, JL, Botting, KJ, Soo, PS, et al. Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? J Pregnancy. 2012; 2012, Article ID 839656.CrossRefGoogle ScholarPubMed
42. Velayo, C, Ito, T, Dong, Y, et al. Molecular patterns of neurodevelopmental preconditioning: a study of the effects of antenatal steroid therapy in a protein-restriction mouse model. ISRN Obstet Gynecol. 2014; 2014, Article ID 193816.CrossRefGoogle Scholar
43. Schaap, AH, Wolf, H, Bruinse, HW, et al. Effects of antenatal corticosteroid administration on mortality and long-term morbidity in early preterm, growth-restricted infants. Obstet Gynecol. 2001; 97, 954960.Google ScholarPubMed
44. Schutte, MF, Treffers, PE, Koppe, JG, Breur, W. Influence of betamethasone and orciprenaline on the incidence of respiratory-distress syndrome in the newborn after preterm labor. BJOG. 1980; 87, 127131.CrossRefGoogle Scholar
45. Sutherland, AE, Crossley, KJ, Allison, BJ, et al. The effects of intrauterine growth restriction and antenatal glucocorticoids on ovine fetal lung development. Pediatr Res. 2012; 71, 689696.CrossRefGoogle ScholarPubMed
46. Refuerzo, JS, Garg, A, Rech, B, et al. Continuous glucose monitoring in diabetic women following antenatal corticosteroid therapy: a pilot study. Am J Perinatol. 2012; 29, 335337.Google ScholarPubMed
47. Amorim, MM, Santos, LC, Faundes, A. Corticosteroid therapy for prevention of respiratory distress syndrome in severe preeclampsia. Am J Obstet Gynecol. 1999; 180, 12831288.CrossRefGoogle ScholarPubMed
48. Mastrobattista, JM, Patel, N, Monga, M. Betamethasone alteration of the one-hour glucose challenge test in pregnancy. J Reprod Med. 2001; 46, 8386.Google ScholarPubMed
49. Mathiesen, ER, Christensen, ABL, Hellmuth, E, et al. Insulin dose during glucocorticoid treatment for fetal lung maturation in diabetic pregnancy: test of analgoritm. Acta Obstet Gynecol Scand. 2002; 81, 835839.CrossRefGoogle ScholarPubMed
50. Wapner, RJ, Sorokin, Y, Thom, EA, et al. Single versus weekly courses of antenatal corticosteroids: evaluation of safety and efficacy. Am J Obstet Gynecol. 2006; 195, 633642.CrossRefGoogle ScholarPubMed
51. Carlson, KS, Smith, BT, Post, M. Insulin acts on the fibroblast to inhibit glucocorticoid stimulation of lung maturation. J Appl Physiol. 1984; 57, 15771579.CrossRefGoogle ScholarPubMed
52. Dekowski, SA, Snyder, JM. The combined effects of insulin and cortisol on surfactant protein Messenger-Rna levels. Pediatr Res. 1995; 38, 513521.CrossRefGoogle Scholar
53. McGillick, EV, Morrison, JL, McMillen, IC, Orgeig, S. Intrafetal glucose infusion alters glucocorticoid signalling and reduces surfactant protein mRNA expression in the lung of the late gestation sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2014; 307, R538R545.CrossRefGoogle ScholarPubMed
54. Rehan, V, Moddemann, D, Casiro, O. Outcome of very-low-birth-weight (<1,500 grams) infants born to mothers with diabetes. Clin Pediatr. 2002; 41, 481491.CrossRefGoogle Scholar
55. Bental, Y, Reichman, B, Shiff, Y, et al. Impact of maternal diabetes mellitus on mortality and morbidity of preterm infants (24–33 weeks’ gestation). Pediatrics. 2011; 128, e848e855.CrossRefGoogle ScholarPubMed
56. Kalra, S, Kalra, B, Gupta, Y. Glycemic management after antenatal corticosteroid therapy. N Am J Med Sci. 2014; 6, 7176.CrossRefGoogle ScholarPubMed
57. Liggins, GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994; 6, 141150.CrossRefGoogle ScholarPubMed
58. Fowden, AL, Li, J, Forhead, AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998; 57, 113122.CrossRefGoogle ScholarPubMed
59. Challis, JRG, Matthews, SG, Gibb, W, Lye, SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000; 21, 514550.Google Scholar
60. Fowden, AL, Szemere, J, Hughes, P, Gilmour, RS, Forhead, AJ. The effects of cortisol on the growth rate of the sheep fetus during late gestation. J Endocrinol. 1996; 151, 97105.CrossRefGoogle ScholarPubMed
61. Venkatesh, VC, Ballard, PL. Glucocorticoids and gene expression. Am J Respir Cell Mol Biol. 1991; 4, 301303.CrossRefGoogle ScholarPubMed
62. Venkatesh, VC, Iannuzzi, DM, Ertsey, R, Ballard, PL. Differential glucocorticoid regulation of the pulmonary hydrophobic surfactant proteins SP-B and SP-C. Am J Respir Cell Mol Biol. 1993; 8, 222228.CrossRefGoogle ScholarPubMed
63. Ballard, PL. Scientific rationale for the use of antenatal glucocorticoids to promote fetal development. Pediatr Rev. 2000; 1, E83E90.Google ScholarPubMed
64. Li, J, Saunders, JC, Fowden, AL, Dauncey, MJ, Gilmour, RS. Transcriptional regulation of insulin-like growth factor-II gene expression by cortisol in fetal sheep during late gestation. J Biol Chem. 1998; 273, 1058610593.CrossRefGoogle ScholarPubMed
65. Olson, AL, Robillard, JE, Kisker, CT, Smith, BA, Perlman, S. Negative regulation of angiotensinogen gene expression by glucocorticoids in fetal sheep liver. Pediatr Res. 1991; 30, 256260.CrossRefGoogle ScholarPubMed
66. Pierce, RA, Mariencheck, WI, Sandefur, S, Crouch, EC, Parks, WC. Glucocorticoids upregulate tropoelastin expression during late stages of fetal lung development. Am J Physiol. 1995; 268(Pt 1), L491L500.Google ScholarPubMed
67. Champigny, G, Voilley, N, Lingueglia, E, et al. Regulation of expression of the lung amiloride-sensitive Na+ channel by steroid hormones. Embo J. 1994; 13, 21772181.CrossRefGoogle ScholarPubMed
68. Barquin, N, Ciccolella, DE, Ridge, KM, Sznajder, JI. Dexamethasone upregulates the Na-K-ATPase in rat alveolar epithelial cells. Am J Physiol. 1997; 273(Pt 1), L825L830.Google ScholarPubMed
69. Chen, YZ, Qiu, J. Possible genomic consequence of nongenomic action of glucocorticoids in neural cells. News Physiol Sci. 2001; 16, 292296.Google ScholarPubMed
70. Buttgereit, F, Brand, MD, Burmester, GR. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem Pharmacol. 1999; 58, 363368.CrossRefGoogle ScholarPubMed
71. Du, J, Wang, Y, Hunter, R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci USA. 2009; 106, 35433548.CrossRefGoogle ScholarPubMed
72. Speirs, HJ, Seckl, JR, Brown, RW. Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol. 2004; 181, 105116.CrossRefGoogle Scholar
73. Wyrwoll, CS, Holmes, MC, Seckl, JR. 11beta-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol. 2011; 32, 265286.CrossRefGoogle Scholar
74. Trahair, JF, Sangild, PT. Systemic and luminal influences on the perinatal development of the gut. Equine Vet J Suppl. 1997; 24, 4050.CrossRefGoogle Scholar
75. Ballard, PL. Hormones and lung maturation. 1986. Springer-Verlag: Berlin.CrossRefGoogle ScholarPubMed
76. Haas, DM, Dantzer, J, Lehmann, AS, et al. The impact of glucocorticoid polymorphisms on markers of neonatal respiratory disease after antenatal betamethasone administration. Am J Obstet Gynecol. 2013; 208, 215.e1215.e6.CrossRefGoogle ScholarPubMed
77. Crowther, CA, Hiller, JE, Doyle, LW, Robinson, JS. Repeat doses of prenatal corticosteroids for women at risk of preterm birth: the ACTORDS trial 12 month follow up. Proceedings of Perinatal Society of Australia and New Zealand 10th Annual Congress Perth, 3–6 April, 2006.Google Scholar
78. Peltoniemi, O, Kari, M, Tammela, O, et al. Randomized trial of a single repeat dose of prenatal betamethasone treatment in imminent preterm birth. Pediatrics. 2007; 119, 290298.CrossRefGoogle ScholarPubMed
79. Smith, LM, Altamirano, AK, Ervin, MG, Seidner, SR, Jobe, AH. Prenatal glucocorticoid exposure and postnatal adaptation in premature newborn baboons ventilated for six days. Am J Obstet Gynecol. 2004; 191, 16881694.CrossRefGoogle ScholarPubMed
80. Stonestreet, BS, Petersson, KH, Sadowska, GB, Pettigrew, KD, Patlak, CS. Antenatal steroids decrease blood-brain barrier permeability in the ovine fetus. Am J Physiol. 1999; 276(Pt 2), R283R289.Google ScholarPubMed
81. Liu, J, Feng, ZC, Yin, XJ, et al. The role of antenatal corticosteroids for improving the maturation of choroid plexus capillaries in fetal mice. Eur J Pediatr. 2008; 167, 12091212.CrossRefGoogle ScholarPubMed
82. Ikegami, M, Polk, D, Jobe, A. Minimum interval from fetal betamethasone treatment to postnatal lung responses in preterm lambs. Am J Obstet Gynecol. 1996; 174, 14081413.CrossRefGoogle ScholarPubMed
83. Ikegami, M, Polk, DH, Jobe, AH, et al. Effect of interval from fetal corticosteriod treatment to delivery on postnatal lung function of preterm lambs. J Appl Physiol. 1996; 80, 591597.CrossRefGoogle ScholarPubMed
84. Polglase, GR, Nitsos, I, Jobe, AH, et al. Maternal and intra-amniotic corticosteroid effects on lung morphometry in preterm lambs. Pediatr Res. 2007; 62, 3236.CrossRefGoogle ScholarPubMed
85. Pinkerton, KE, Willet, KE, Peake, JL, et al. Prenatal glucocorticoid and T4 effects on lung morphology in preterm lambs. Am J Respir Crit Care Med. 1997; 156(Pt 1), 624630.CrossRefGoogle ScholarPubMed
86. Ballard, PL, Ning, Y, Polk, D, Ikegami, M, Jobe, A. Glucorticoid regulation of surfactant components in immature lambs. Am J Physiol. 1997; 273(Pt 1), L1048L1057.Google Scholar
87. Moss, TJ, Nitsos, I, Knox, CL, et al. Ureaplasma colonization of amniotic fluid and efficacy of antenatal corticosteroids for preterm lung maturation in sheep. Am J Obstet Gynecol. 2009; 200(1), 96.e196.e6.CrossRefGoogle ScholarPubMed
88. Blanford, AT, Murphy, BE. In vitro metabolism of prednisolone, dexamethasone, betamethasone, and cortisol by the human placenta. Am J Obstet Gynecol. 1977; 127, 264267.CrossRefGoogle ScholarPubMed
89. Ballard, PL, Granberg, P, Ballard, RA. Glucocorticoid levels in maternal and cord serum after prenatal betamethasone therapy to prevent respiratory distress syndrome. J Clin Invest. 1975; 56, 15481554.CrossRefGoogle ScholarPubMed
90. Anderson, AB, Gennser, G, Jeremy, JY, et al. Placental transfer and metabolism of betamethasone in human pregnancy. Obstet Gynecol. 1977; 49, 471474.Google ScholarPubMed
91. Brownfoot, FC, Crowther, CA, Middleton, P. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2008; CD006764.CrossRefGoogle ScholarPubMed
92. Jobe, AH, Soll, RF. Choice and dose of corticosteroid for antenatal treatments. Am J Obstet Gynecol. 2004; 190, 878881.CrossRefGoogle ScholarPubMed
93. Fonseca, L, Alcorn, JL, Ramin, SM, Vidaeff, AC. Comparison of the effects of betamethasone and dexamethasone on surfactant protein A mRNA expression in human lung cells. J Matern Fetal Neonatal Med. 2014; 15.Google ScholarPubMed
94. Crowther, CA, Harding, JE, Middleton, PF, et al. Australasian randomised trial to evaluate the role of maternal intramuscular dexamethasone versus betamethasone prior to preterm birth to increase survival free of childhood neurosensory disability (A*STEROID): study protocol. BMC Pregnancy Childbirth. 2013; 13, 104.CrossRefGoogle ScholarPubMed
95. Howie, RN, Liggins, GC. Clinical trial of antepartum betamethasone therapy for prevention of respiratory distress in pre-term infants. In Pre-term labour: Proceedings of the Fifth Study Group of the Royal College of Obstetricians and Gynaecologists (eds. Anderson A, Beard R, Brundell J, Dunn P), pp. 281289. London: Royal College of Obstetricians and Gynaecologists; 1977.Google Scholar
96. Jobe, AH, Nitsos, I, Pillow, JJ, et al. Betamethasone dose and formulation for induced lung maturation in fetal sheep. Am J Obstet Gynecol. 2009; 201, 611.e1611.e7.CrossRefGoogle ScholarPubMed
97. Howie, RN, Liggins, GC. Prevention of respiratory distress syndrome in premature infants by antepartum glucocorticoid treatment. In Respiratory distress syndrome (eds. Villee C, Villee D, Zuckerman J), 1973; pp. 369380. Academic Press: London.Google Scholar
98. Jobe, AH, Newnham, J, Willet, K, Sly, P, Ikegami, M. Fetal versus maternal and gestational age effects of repetitive antenatal glucocorticoids. Pediatrics. 1998; 102, 11161125.CrossRefGoogle ScholarPubMed
99. Walther, FJ, Jobe, AH, Ikegami, M. Repetitive prenatal glucocorticoid therapy reduces oxidative stress in the lungs of preterm lambs. J Appl Physiol. 1998; 85, 273278.CrossRefGoogle ScholarPubMed
100. Ikegami, M, Jobe, A, Newnham, J, et al. Repetitive prenatal glucocorticoids improve lung function and decrease growth in preterm lambs. Am J Respir Crit Care Med. 1997; 156, 178184.CrossRefGoogle ScholarPubMed
101. Pua, ZJ, Stonestreet, BS, Cullen, A, et al. Histochemical analyses of altered fetal lung development following single vs multiple courses of antenatal steroids. J Histochem Cytochem. 2005; 53, 14691479.CrossRefGoogle ScholarPubMed
102. Pratt, L, Magness, RR, Phernetton, T, et al. Repeated use of betamethasone in rabbits: effects of treatment variation on adrenal suppression, pulmonary maturation, and pregnancy outcome. Am J Obstet Gynecol. 1999; 180, 9951005.CrossRefGoogle ScholarPubMed
103. Stewart, JD, Sienko, AE, Gonzalez, CL, Christensen, HD, Rayburn, WF. Placebo-controlled comparison between a single dose and a multidose of betamethasone in accelerating lung maturation of mice offspring. Am J Obstet Gynecol. 1998; 179, 12411247.CrossRefGoogle Scholar
104. Engle, MJ, Kemnitz, JW, Rao, TJ, Perelman, RH, Farrell, PM. Effects of maternal dexamethasone therapy on fetal lung development in the rhesus monkey. Am J Perinatol. 1996; 13, 399407.CrossRefGoogle Scholar
105. Tan, RC, Ikegami, M, Jobe, AH, et al. Developmental and glucocorticoid regulation of surfactant protein mRNAs in preterm lambs. Am J Physiol. 1999; 277(Pt 1), L1142L1148.Google ScholarPubMed
106. McEvoy, C, Schilling, D, Spitale, P, et al. Decreased respiratory compliance in infants less than or equal to 32 weeks’ gestation, delivered more than 7 days after antenatal steroid therapy. Pediatrics. 2008; 121, e1032e1038.CrossRefGoogle ScholarPubMed
107. McEvoy, C, Bowling, S, Williamson, K, et al. Timing of antenatal corticosteroids and neonatal pulmonary mechanics. Am J Obstet Gynecol. 2000; 183, 895899.CrossRefGoogle ScholarPubMed
108. Crowther, CA, McKinlay, CJD, Middleton, P, Harding, JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Sys Rev. 2011; Issue 6, Article ID CD003935.CrossRefGoogle ScholarPubMed
109. Crowther, CA, Aghajafari, F, Askie, LM, et al. Repeat prenatal corticosteroid prior to preterm birth: a systematic review and individual participant data meta-analysis for the PRECISE study group (prenatal repeat corticosteroid international IPD study group: assessing the effects using the best level of evidence) – study protocol. Syst Rev. 2012; 1, 12.CrossRefGoogle Scholar
110. Zephyrin, LC, Hong, KN, Wapner, RJ, et al. Gestational age-specific risks vs benefits of multicourse antenatal corticosteroids for preterm labor. Am J Obstet Gynecol. 2013; 209, 330.e1330.e7.CrossRefGoogle ScholarPubMed
111. Barker, DJP. The developmental origins of well-being. Phil Trans R Soc Lond. 2004; 359, 13591366.CrossRefGoogle ScholarPubMed
112. Benediktsson, R, Lindsay, RS, Noble, J, Seckl, JR, Edwards, CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet. 1993; 341, 339341.CrossRefGoogle ScholarPubMed
113. Nyirenda, MJ, Lindsay, RS, Kenyon, CJ, Burchell, A, Seckl, JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest. 1998; 101, 21742181.CrossRefGoogle ScholarPubMed
114. Sloboda, DM, Moss, TJM, Li, S, et al. Hepatic glucose regulation and metabolism in adult sheep: effects of prenatal betamethasone. Am J Physiol Endocrinol Metab. 2005; 289, E721E728.CrossRefGoogle ScholarPubMed
115. Lindsay, RS, Lindsay, RM, Edwards, CR, Seckl, JR. Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension. 1996; 27, 12001204.CrossRefGoogle ScholarPubMed
116. Langley-Evans, SC, Phillips, GJ, Benediktsson, R, et al. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 1996; 17, 169172.CrossRefGoogle ScholarPubMed
117. Langley-Evans, SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J Hypertens. 1997; 15, 537544.CrossRefGoogle ScholarPubMed
118. Stewart, PM, Rogerson, FM, Mason, JI. Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab. 1995; 80, 885890.Google Scholar
119. McTernan, CL, Draper, N, Nicholson, H, et al. Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab. 2001; 86, 49794983.Google Scholar
120. Goedhart, G, Vrijkotte, TG, Roseboom, TJ, et al. Maternal cortisol and offspring birthweight: results from a large prospective cohort study. Psychoneuroendocrinology. 2010; 35, 644652.CrossRefGoogle ScholarPubMed
121. Bolten, MI, Wurmser, H, Buske-Kirschbaum, A, et al. Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health. 2011; 14, 3341.CrossRefGoogle ScholarPubMed
122. Huh, S, Andrew, R, Rich-Edwards, J, et al. Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med. 2008; 6, 25.CrossRefGoogle ScholarPubMed
123. Van Dijk, AE, Van Eijsden, M, Stronks, K, Gemke, RJ, Vrijkotte, TG. The relation of maternal job strain and cortisol levels during early pregnancy with body composition later in the 5-year-old child: the ABCD study. Early Hum Dev. 2012; 88, 351356.CrossRefGoogle ScholarPubMed
124. Raikkonen, K, Seckl, JR, Heinonen, K, et al. Maternal prenatal licorice consumption alters hypothalamic–pituitary–adrenocortical axis function in children. Psychoneuroendocrinology. 2010; 35, 15871593.CrossRefGoogle ScholarPubMed
125. Bergman, K, Sarkar, P, Glover, V, O’Connor, TG. Maternal prenatal cortisol and infant cognitive development: moderation by infant–mother attachment. Biol Psychiatry. 2010; 67, 10261032.CrossRefGoogle ScholarPubMed
126. Geoffroy, MC, Hertzman, C, Li, L, Power, C. Morning salivary cortisol and cognitive function in mid-life: evidence from a population-based birth cohort. Psychol Med. 2012; 42, 17631773.CrossRefGoogle ScholarPubMed
127. Raikkonen, K, Pesonen, AK, Heinonen, K, et al. Maternal licorice consumption and detrimental cognitive and psychiatric outcomes in children. Am J Epidemiol. 2009; 170, 11371146.CrossRefGoogle ScholarPubMed
128. Buss, C, Davis, EP, Shahbaba, B, et al. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci USA. 2012; 109, E1312E1319.CrossRefGoogle ScholarPubMed
129. Welberg, LA, Seckl, JR, Holmes, MC. Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience. 2001; 104, 7179.CrossRefGoogle ScholarPubMed
130. Welberg, LA, Seckl, JR, Holmes, MC. Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci. 2000; 12, 10471054.CrossRefGoogle ScholarPubMed
131. Raikkonen, K, Seckl, JR, Pesonen, AK, Simons, A, Van den Bergh, BR. Stress, glucocorticoids and liquorice in human pregnancy: programmers of the offspring brain. Stress. 2011; 14, 590603.CrossRefGoogle ScholarPubMed
132. Baird, J, Kurshid, MA, Kim, M, et al. Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int. 2011; 22, 13231334.CrossRefGoogle ScholarPubMed
133. Dahlgren, J, Nilsson, C, Jennische, E, et al. Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol Endocrinol Metab. 2001; 281, E326E334.CrossRefGoogle ScholarPubMed
134. Berry, MJ, Jaquiery, AL, Oliver, MH, Harding, JE, Bloomfield, FH. Antenatal corticosteroid exposure at term increases adult adiposity: an experimental study in sheep. Acta Obstet Gynecol Scand. 2013; 92, 862865.CrossRefGoogle ScholarPubMed
135. Gatford, KL, Wintour, EM, De Blasio, MJ, Owens, JA, Dodic, M. Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin Sci (Colch). 2000; 98, 553560.CrossRefGoogle ScholarPubMed
136. Cleasby, ME, Kelly, PA, Walker, BR, Seckl, JR. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology. 2003; 144, 9991007.CrossRefGoogle ScholarPubMed
137. Celsi, G, Kistner, A, Aizman, R, et al. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res. 1998; 44, 317322.CrossRefGoogle ScholarPubMed
138. Levitt, NS, Lindsay, RS, Holmes, MC, Seckl, JR. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology. 1996; 64, 412418.CrossRefGoogle ScholarPubMed
139. Dagan, A, Gattineni, J, Habib, S, Baum, M. Effect of prenatal dexamethasone on postnatal serum and urinary angiotensin II levels. Am J Hypertens. 2010; 23, 420424.CrossRefGoogle ScholarPubMed
140. Tang, JI, Kenyon, CJ, Seckl, JR, Nyirenda, MJ. Prenatal overexposure to glucocorticoids programs renal 11beta-hydroxysteroid dehydrogenase type 2 expression and salt-sensitive hypertension in the rat. J Hypertens. 2011; 29, 282289.CrossRefGoogle ScholarPubMed
141. O’Regan, D, Kenyon, CJ, Seckl, JR, Holmes, MC. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab. 2004; 287, E863E870.CrossRefGoogle ScholarPubMed
142. Dodic, M, Samuel, C, Moritz, K, et al. Impaired cardiac functional reserve and left ventricular hypertrophy in adult sheep after prenatal dexamethasone exposure. Circ Res. 2001; 89, 623629.CrossRefGoogle ScholarPubMed
143. Figueroa, JP, Rose, JC, Massmann, GA, Zhang, J, Acuna, G. Alterations in fetal kidney development and elevations in arterial blood pressure in young adult sheep after clinical doses of antenatal glucocorticoids. Pediatr Res. 2005; 58, 510515.CrossRefGoogle ScholarPubMed
144. Shaltout, HA, Rose, JC, Figueroa, JP, et al. Acute AT(1)-receptor blockade reverses the hemodynamic and baroreflex impairment in adult sheep exposed to antenatal betamethasone. Am J Physiol Heart Circ Physiol. 2010; 299, H541H547.CrossRefGoogle ScholarPubMed
145. de Vries, A, Holmes, MC, Heijnis, A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic–pituitary–adrenal axis function. J Clin Invest. 2007; 117, 10581067.CrossRefGoogle ScholarPubMed
146. Moss, TJ, Sloboda, DM, Gurrin, LC, et al. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol. 2001; 281, R960R970.CrossRefGoogle ScholarPubMed
147. Long, NM, Shasa, DR, Ford, SP, Nathanielsz, PW. Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids. Am J Obstet Gynecol. 2012; 207, 203.e1203.e8.CrossRefGoogle ScholarPubMed
148. Nyirenda, MJ, Welberg, LA, Seckl, JR. Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence? J Endocrinol. 2001; 170, 653660.CrossRefGoogle ScholarPubMed
149. Sloboda, DM, Moss, T, Li, S, et al. Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. Am J Physiol Endocrinol Metab. 2007; 292, E61E70.CrossRefGoogle ScholarPubMed
150. Ortiz, LA, Quan, A, Weinberg, A, Baum, M. Effect of prenatal dexamethasone on rat renal development. Kidney Int. 2001; 59, 16631669.CrossRefGoogle ScholarPubMed
151. Ortiz, LA, Quan, A, Zarzar, F, Weinberg, A, Baum, M. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension. 2003; 41, 328334.CrossRefGoogle ScholarPubMed
152. Singh, RR, Cullen-McEwen, LA, Kett, MM, et al. Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol (Lond). 2007; 579(Pt 2), 503513.CrossRefGoogle ScholarPubMed
153. Wintour, EM, Moritz, KM, Johnson, K, et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol (Lond). 2003; 549(Pt 3), 929935.CrossRefGoogle ScholarPubMed
154. Banjanin, S, Kapoor, A, Matthews, SG. Prenatal glucocorticoid exposure alters hypothalamic–pituitary–adrenal function and blood pressure in mature male guinea pigs. J Physiol (Lond). 2004; 558(Pt 1), 305318.CrossRefGoogle ScholarPubMed
155. Dodic, M, Hantzis, V, Duncan, J, et al. Programming effects of short prenatal exposure to cortisol. Faseb J. 2002; 16, 10171026.CrossRefGoogle ScholarPubMed
156. Nyirenda, MJ, Carter, R, Tang, JI, et al. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11beta-hydroxysteroid dehydrogenase type 1. Diabetes. 2009; 58, 28732879.CrossRefGoogle ScholarPubMed
157. Sloboda, DM, Newnham, JP, Challis, JR. Repeated maternal glucocorticoid administration and the developing liver in fetal sheep. J Endocrinol. 2002; 175, 535543.CrossRefGoogle ScholarPubMed
158. Segar, JL, Roghair, RD, Segar, EM, et al. Early gestation dexamethasone alters baroreflex and vascular responses in newborn lambs before hypertension. Am J Physiol Regul Integr Comp Physiol. 2006; 291, R481R488.CrossRefGoogle ScholarPubMed
159. Shaltout, HA, Chappell, MC, Rose, JC, Diz, DI. Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Physiol Endocrinol Metab. 2011; 300, E979E985.CrossRefGoogle ScholarPubMed
160. Moritz, KM, Dodic, M, Jefferies, AJ, et al. Haemodynamic characteristics of hypertension induced by prenatal cortisol exposure in sheep. Clin Exp Pharmacol Physiol. 2009; 36, 981987.CrossRefGoogle ScholarPubMed
161. Contag, SA, Bi, J, Chappell, MC, Rose, JC. Developmental effect of antenatal exposure to betamethasone on renal angiotensin II activity in the young adult sheep. Am J Physiol Renal Physiol. 2010; 298, F847F856.CrossRefGoogle ScholarPubMed
162. Massmann, GA, Zhang, J, Rose, JC, Figueroa, JP. Acute and long-term effects of clinical doses of antenatal glucocorticoids in the developing fetal sheep kidney. J Soc Gynecol Investig. 2006; 13, 174180.CrossRefGoogle ScholarPubMed
163. Dean, F, Yu, C, Lingas, RI, Matthews, SG. Prenatal glucocorticoid modifies hypothalamo-pituitary-adrenal regulation in prepubertal guinea pigs. Neuroendocrinology. 2001; 73, 194202.CrossRefGoogle ScholarPubMed
164. Uno, H, Eisele, S, Sakai, A, et al. Neurotoxicity of glucocorticoids in the primate brain. Horm Behav. 1994; 28, 336348.CrossRefGoogle ScholarPubMed
165. O’Brien, K, Sekimoto, H, Boney, C, Malee, M. Effect of fetal dexamethasone exposure on the development of adult insulin sensitivity in a rat model. J Matern Fetal Neonatal Med. 2008; 21, 623628.CrossRefGoogle ScholarPubMed
166. Jellyman, JK, Martin-Gronert, MS, Cripps, RL, et al. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation. PLoS One. 2012; 7, e52363.CrossRefGoogle ScholarPubMed
167. Moss, TJM, Doherty, DA, Nitsos, I, et al. Effects into adulthood of single or repeated antenatal corticosteroids in sheep. Am J Obstet Gynecol. 2005; 192, 146152.CrossRefGoogle ScholarPubMed
168. Gesina, E, Tronche, F, Herrera, P, et al. Dissecting the role of glucocorticoids on pancreas development. Diabetes. 2004; 53, 23222329.CrossRefGoogle ScholarPubMed
169. Shen, CN, Seckl, JR, Slack, JM, Tosh, D. Glucocorticoids suppress beta-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J. 2003; 375(Pt 1), 4150.CrossRefGoogle ScholarPubMed
170. Blondeau, B, Lesage, J, Czernichow, P, Dupouy, JP, Breant, B. Glucocorticoids impair fetal beta-cell development in rats. Am J Physiol Endocrinol Metab. 2001; 281, E592E599.CrossRefGoogle ScholarPubMed
171. Moritz, K, Butkus, A, Hantzis, V, et al. Prolonged low-dose dexamethasone, in early gestation, has no long-term deleterious effect on normal ovine fetuses. Endocrinology. 2002; 143, 11591165.CrossRefGoogle ScholarPubMed
172. Dodic, M, Tersteeg, M, Jefferies, A, Wintour, EM, Moritz, K. Prolonged low-dose dexamethasone treatment, in early gestation, does not alter blood pressure or renal function in adult sheep. J Endocrinol. 2003; 179, 275280.CrossRefGoogle ScholarPubMed
173. Bramlage, CP, Schlumbohm, C, Pryce, CR, et al. Prenatal dexamethasone exposure does not alter blood pressure and nephron number in the young adult marmoset monkey. Hypertension. 2009; 54, 11151122.CrossRefGoogle ScholarPubMed
174. Gubhaju, L, Sutherland, MR, Yoder, BA, et al. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol. 2009; 297, F1668F1677.CrossRefGoogle Scholar
175. Liu, L, Li, A, Matthews, SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab. 2001; 280, E729E739.CrossRefGoogle ScholarPubMed
176. Moritz, KM, Dodic, M, Wintour, EM. Kidney development and the fetal programming of adult disease. Bioessays. 2003; 25, 212220.CrossRefGoogle ScholarPubMed
177. Sloboda, DM, Moss, T, Gurrin, L, Newnham, JP, Challis, J. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic–pituitary–adrenal function. J Endocrinol. 2002; 172, 7181.CrossRefGoogle ScholarPubMed
178. Dalziel, SR, Walker, NK, Parag, V, et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005; 365, 18561862.CrossRefGoogle ScholarPubMed
179. Dessens, AB, Haas, HS, Koppe, JG. Twenty-year follow-up of antenatal corticosteroid treatment. Pediatrics. 2000; 105, E77.CrossRefGoogle ScholarPubMed
180. Norberg, H, Stalnacke, J, Nordenstrom, A, Norman, M. Repeat antenatal steroid exposure and later blood pressure, arterial stiffness, and metabolic profile. J Pediatr. 2013; 163, 711716.CrossRefGoogle ScholarPubMed
181. Finken, MJ, Keijzer-Veen, MG, Dekker, FW, et al. Antenatal glucocorticoid treatment is not associated with long-term metabolic risks in individuals born before 32 weeks of gestation. Arch Dis Child Fetal Neonatal Ed. 2008; 93, F442F447.CrossRefGoogle Scholar
182. de Vries, WB, Karemaker, R, Mooy, NF, et al. Cardiovascular follow-up at school age after perinatal glucocorticoid exposure in prematurely born children: perinatal glucocorticoid therapy and cardiovascular follow-up. Arch Pediatr Adolesc Med. 2008; 162, 738744.CrossRefGoogle ScholarPubMed
183. Doyle, LW, Ford, GW, Davis, NM, Callanan, C. Antenatal corticosteroid therapy and blood pressure at 14 years of age in preterm children. Clin Sci (Colch). 2000; 98, 137142.CrossRefGoogle ScholarPubMed
184. Kelly, BA, Lewandowski, AJ, Worton, SA, et al. Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics. 2012; 129, e1282e1290.CrossRefGoogle ScholarPubMed
185. Alexander, N, Rosenlocher, F, Stalder, T, et al. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J Clin Endocrinol Metab. 2012; 97, 35383544.CrossRefGoogle ScholarPubMed
186. Erni, K, Shaqiri-Emini, L, La Marca, R, Zimmermann, R, Ehlert, U. Psychobiological effects of prenatal glucocorticoid exposure in 10-year-old-children. Front Psychiatry. 2012; 3, 104.CrossRefGoogle ScholarPubMed
187. Asztalos, EV, Murphy, KE, Willan, AR, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5). JAMA Pediatr. 2013; 167, 11021110.Google ScholarPubMed
188. Wapner, RJ, Sorokin, Y, Mele, L, et al. Long-term outcomes after repeat doses of antenatal corticosteroids. N Engl J Med. 2007; 357, 11901198.CrossRefGoogle ScholarPubMed
189. Crowther, CA, Doyle, LW, Haslam, RR, et al. Outcomes at 2 years of age after repeat doses of antenatal corticosteroids. N Engl J Med. 2007; 357, 11791189.CrossRefGoogle ScholarPubMed
190. McKinlay, CJD, Cutfield, WS, Battin, MR, et al. Cardiovascular risk factors after exposure to repeat antenatal betamethasone: early school-age follow-up of a randomised trial (ACTORDS). J Paediatr Child Health. 2011; 47(S1), A042.Google Scholar
191. Newnham, JP, Evans, SF, Godfrey, M, et al. Maternal, but not fetal, administration of corticosteroids restricts fetal growth. J Matern Fetal Med. 1999; 8, 8187.Google Scholar
192. Fowden, AL, Forhead, AJ. Endocrine regulation of feto-placental growth. Horm Res. 2009; 72, 257265.Google ScholarPubMed
193. Stonestreet, BS, Watkins, S, Petersson, KH, Sadowska, GB. Effects of multiple courses of antenatal corticosteroids on regional brain and somatic tissue water content in ovine fetuses. J Soc Gynecol Investig. 2004; 11, 166174.CrossRefGoogle ScholarPubMed
194. Milley, JR. Effects of increased cortisol concentration on ovine fetal leucine kinetics and protein metabolism. Am J Physiol. 1995; 268(Pt 1), E1114E1122.Google ScholarPubMed
195. Marconi, AM, Mariotti, V, Teng, C, et al. Effect of antenatal betamethasone on maternal and fetal amino acid concentration. Am J Obstet Gynecol. 2010; 202, 166.e1166.e6.CrossRefGoogle ScholarPubMed
196. Verhaeghe, J, Vanstapel, F, Van Bree, R, Van Herck, E, Coopmans, W. Transient catabolic state with reduced IGF-I after antenatal glucocorticoids. Pediatr Res. 2007; 62, 295300.CrossRefGoogle ScholarPubMed
197. Gatford, KL, Owens, JA, Li, S, et al. Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny. Am J Physiol Endocrinol Metab. 2008; 295, E170E178.CrossRefGoogle ScholarPubMed
198. Ahmad, I, Beharry, KD, Valencia, AM, et al. Influence of a single course of antenatal betamethasone on the maternal-fetal insulin-IGF-GH axis in singleton pregnancies. Growth Horm IGF Res. 2006; 16, 267275.CrossRefGoogle ScholarPubMed
199. Jensen, E, Gallahere, B, Breier, B, Harding, J. The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J Endocrinol. 2002; 174, 2736.CrossRefGoogle ScholarPubMed
200. Mosier, HD Jr., Spencer, EM, Dearden, LC, Jansons, RA. The effect of glucocorticoids on plasma insulin-like growth factor I concentration in the rat fetus. Pediatr Res. 1987; 22, 9295.CrossRefGoogle ScholarPubMed
201. Fowden, AL. The insulin-like growth factors and feto-placental growth. Placenta. 2003; 24, 803812.CrossRefGoogle ScholarPubMed
202. Stewart, JD, Gonzalez, CL, Christensen, HD, Rayburn, WF. Impact of multiple antenatal doses of betamethasone on growth and development of mice offspring. Am J Obstet Gynecol. 1997; 177, 11381144.CrossRefGoogle ScholarPubMed
203. Sawady, J, Mercer, BM, Wapner, RJ, et al. The National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network Beneficial Effects of Antenatal Repeated Steroids study: impact of repeated doses of antenatal corticosteroids on placental growth and histologic findings. Am J Obstet Gynecol. 2007; 197, 281.e1281.e8.CrossRefGoogle ScholarPubMed
204. Battin, M, Bevan, C, Harding, J. Growth in the neonatal period after repeat courses of antenatal corticosteroids: data from the ACTORDS randomised trial. Arch Dis Child Fetal Neonatal Ed. 2012; 97, F99F105.CrossRefGoogle ScholarPubMed
205. Smolders-de Haas, H, Neuvel, J, Schmand, B, et al. Physical development and medical history of children who were treated antenatally with corticosteroids to prevent respiratory distress syndrome: a 10- to 12-year follow-up. Pediatrics. 1990; 86, 6570.CrossRefGoogle Scholar
206. Dalziel, SR, Liang, A, Parag, V, Rodgers, A, Harding, JE. Blood pressure at 6 years of age after prenatal exposure to betamethasone: follow-up results of a randomized, controlled trial. Pediatrics. 2004; 114, e373e377.CrossRefGoogle ScholarPubMed
207. Swolin-Eide, D, Dahlgren, J, Nilsson, C, et al. Affected skeletal growth but normal bone mineralization in rat offspring after prenatal dexamethasone exposure. J Endocrinol. 2002; 174, 411418.CrossRefGoogle ScholarPubMed
208. Dalziel, SR, Fenwick, S, Cundy, T, et al. Peak bone mass after exposure to antenatal betamethasone and prematurity: follow-up of a randomized controlled trial. J Bone Miner Res. 2006; 21, 11751186.CrossRefGoogle ScholarPubMed
209. Dunn, E, Kapoor, A, Leen, J, Matthews, SG. Prenatal synthetic glucocorticoid exposure alters hypothalamic–pituitary–adrenal regulation and pregnancy outcomes in mature female guinea pigs. J Physiol (Lond). 2010; 588(Pt 5), 887899.CrossRefGoogle ScholarPubMed
210. Iqbal, M, Moisiadis, VG, Kostaki, A, Matthews, SG. Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic–pituitary–adrenal function. Endocrinology. 2012; 153, 32953307.CrossRefGoogle ScholarPubMed
211. Huang, WL, Beazley, LD, Quinlivan, JA, et al. Effect of corticosteroids on brain growth in fetal sheep. Obstet Gynecol. 1999; 94, 213218.Google ScholarPubMed
212. Uno, H, Lohmiller, L, Thieme, C, et al. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res Dev Brain Res. 1990; 53, 157167.CrossRefGoogle ScholarPubMed
213. Dunlop, SA, Archer, MA, Quinlivan, JA, Beazley, LD, Newnham, JP. Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J Matern Fetal Med. 1997; 6, 309313.Google ScholarPubMed
214. Huang, WL, Harper, CG, Evans, SF, Newnham, JP, Dunlop, SA. Repeated prenatal corticosteroid administration delays myelination of the corpus callosum in fetal sheep. Int J Dev Neurosci. 2001; 19, 415425.CrossRefGoogle ScholarPubMed
215. Antonow-Schlorke, I, Helgert, A, Gey, C, et al. Adverse effects of antenatal glucocorticoids on cerebral myelination in sheep. Obstet Gynecol. 2009; 113, 142151.CrossRefGoogle ScholarPubMed
216. Malaeb, S, Hovanesian, V, Sarasin, M, et al. Effects of maternal antenatal glucocorticoid treatment on apoptosis in the ovine fetal cerebral cortex. J Neurosci Res. 2009; 87, 179189.CrossRefGoogle ScholarPubMed
217. Scheepens, A, van de Waarenburg, M, van den Hove, D, Blanco, CE. A single course of prenatal betamethasone in the rat alters postnatal brain cell proliferation but not apoptosis. J Physiol (Lond). 2003; 552(Pt 1), 163175.CrossRefGoogle Scholar
218. MacArthur, BA, Howie, RN, Dezoete, JA, Elkins, J. Cognitive and psychosocial development of 4-year-old children whose mothers were treated antenatally with betamethasone. Pediatrics. 1981; 68, 638643.CrossRefGoogle ScholarPubMed
219. MacArthur, B, Howie, R, Dezoete, J, Elkins, J. School progress and cognitive development of 6-year old children whose mothers were treated antenatally with betamethasone. Pediatrics. 1982; 70, 99105.CrossRefGoogle Scholar
220. Collaborative Group on Antenatal Steroid Therapy. Effects of antenatal dexamethasone administration in the infant: long-term follow-up. J Pediatr. 1984; 104, 259267.CrossRefGoogle Scholar
221. Schmand, B, Neuvel, J, Smolders-de Haas, H, et al. Psychological development of children who were treated antenatally with corticosteroids to prevent respiratory distress syndrome. Pediatrics. 1990; 86, 5864.CrossRefGoogle ScholarPubMed
222. Dalziel, SR, Lim, VK, Lambert, A, et al. Antenatal exposure to betamethasone: psychological functioning and health related quality of life 31 years after inclusion in randomised controlled trial. BMJ. 2005; 331, 665.CrossRefGoogle ScholarPubMed
223. French, NP, Hagan, R, Evans, SF, Mullan, A, Newnham, JP. Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol. 2004; 190, 588595.CrossRefGoogle ScholarPubMed
224. Asztalos, EV, Murphy, KE, Hannah, ME, et al. Multiple courses of antenatal corticosteroids for preterm birth study: 2-year outcomes. Pediatrics. 2010; 126, e1045e1055.CrossRefGoogle ScholarPubMed
225. Crowther, CA, Doyle, LW, Anderson, P, et al. Repeat dose(s) of prenatal corticosteroids for women at risk of preterm birth: early school-age outcomes (6 to 8 years’) for children in the ACTORDS trial. J Paediatr Child Health. 2011; 47, A156.Google Scholar
226. Modi, N, Lewis, H, Al-Naqeeb, N, et al. The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr Res. 2001; 50, 581585.CrossRefGoogle Scholar
227. Asztalos, E, Willan, A, Murphy, K, et al. Association between gestational age at birth, antenatal corticosteroids, and outcomes at 5 years: multiple courses of antenatal corticosteroids for preterm birth study at 5 years of age (MACS-5). BMC Pregnancy Childbirth. 2014; 14, 272.CrossRefGoogle ScholarPubMed
228. Gates, S, Brocklehurst, P. Decline in effectiveness of antenatal corticosteroids with time to birth: real or artefact? BMJ. 2007; 335, 7779.CrossRefGoogle ScholarPubMed
229. Bunton, TE, Plopper, CG. Triamcinolone-induced structural alterations in the development of the lung of the fetal rhesus macaque. Am J Obstet Gynecol. 1984; 148, 203215.CrossRefGoogle ScholarPubMed
230. Massaro, D, Massaro, GD. Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am J Physiol. 1986; 251(Pt 2), R218R224.Google ScholarPubMed
231. Blanco, LN, Massaro, GD, Massaro, D. Alveolar dimensions and number: developmental and hormonal regulation. Am J Physiol. 1989; 257(Pt 1), L240L247.Google ScholarPubMed
232. Tschanz, SA, Damke, BM, Burri, PH. Influence of postnatally administered glucocorticoids on rat lung growth. Biol Neonate. 1995; 68, 229245.CrossRefGoogle ScholarPubMed
233. Roth-Kleiner, M, Berger, TM, Gremlich, S, et al. Neonatal steroids induce a down-regulation of tenascin-C and elastin and cause a deceleration of the first phase and an acceleration of the second phase of lung alveolarization. Histochem Cell Biol. 2014; 141, 7584.CrossRefGoogle Scholar
234. Tschanz, SA, Haenni, B, Burri, PH. Glucocorticoid induced impairment of lung structure assessed by digital image analysis. Eur J Pediatr. 2002; 161, 2630.CrossRefGoogle ScholarPubMed
235. Wiebicke, W, Poynter, A, Chernick, V. Normal lung growth following antenatal dexamethasone treatment for respiratory distress syndrome. Pediatr Pulmonol. 1988; 5, 2730.CrossRefGoogle ScholarPubMed
236. Dalziel, SR, Rea, HH, Walker, NK, et al. Long term effects of antenatal betamethasone on lung function: 30 year follow up of a randomised controlled trial. Thorax. 2006; 61, 678683.CrossRefGoogle ScholarPubMed
237. Schwab, M, Coksaygan, T, Samtani, MN, Jusko, WJ, Nathanielsz, PW. Kinetics of betamethasone and fetal cardiovascular adverse effects in pregnant sheep after different doses. Obstet Gynecol. 2006; 108(Pt 1), 617625.CrossRefGoogle ScholarPubMed
238. Loehle, M, Schwab, M, Kadner, S, et al. Dose-response effects of betamethasone on maturation of the fetal sheep lung. Am J Obstet Gynecol. 2009; 202, 186.e1.CrossRefGoogle ScholarPubMed
239. Muhlhausler, BS, Bloomfield, FH, Gillman, MW. Whole animal experiments should be more like human randomized controlled trials. PLoS Biol. 2013; 11, e1001481.CrossRefGoogle ScholarPubMed
240. Mildenhall, LFJ, Battin, MR, Morton, SMB, et al. Exposure to repeat doses of antenatal glucocorticoids is associated with altered cardiovascular status after birth. Arch Dis Child Fetal Neonatal Ed. 2006; 91, F56F60.CrossRefGoogle ScholarPubMed
241. Mildenhall, L, Battin, M, Bevan, C, Kuschel, C, Harding, JE. Repeat prenatal corticosteroid doses do not alter neonatal blood pressure or myocardial thickness: randomized, controlled trial. Pediatrics. 2009; 123, e646e652.CrossRefGoogle ScholarPubMed
242. Khandelwal, M, Chang, E, Hansen, C, Hunter, K, Milcarek, B. Betamethasone dosing interval: 12 or 24 hours apart? A randomized, noninferiority open trial. Am J Obstet Gynecol. 2012; 206, 201.e1201.e11.CrossRefGoogle ScholarPubMed
243. Ballard, PL, Ballard, RA. Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am J Obstet Gynecol. 1995; 173, 254262.CrossRefGoogle ScholarPubMed
244. Grier, DG, Halliday, HL. Effects of glucocorticoids on fetal and neonatal lung development. Treat Respir Med. 2004; 3, 295306.CrossRefGoogle ScholarPubMed