Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:32:18.139Z Has data issue: false hasContentIssue false

Survival analysis of longitudinal data: the case of English population aged 50 and over

Published online by Cambridge University Press:  10 August 2023

Marjan Qazvini*
Affiliation:
Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences, Heriot-Watt University, Dubai, UAE
*
Corresponding author: Email: [email protected], [email protected]
Get access

Abstract

This study considers data from 5 waves of the English Longitudinal Study of Ageing (ELSA). We aim to study the impact of demographic and self-rated health variables including disability and diseases on the survival of the population aged 50+. The disability variables that we consider are mobility impairment, difficulties in performing Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL). One of the problems with the survey study is missing observations. This may happen due to different reasons, such as errors, nonresponse and temporary withdrawals. We address this problem by applying single and multiple imputation methods. We then fit a Generalized Linear model (GLM) and Generalized Linear Mixed model (GLMM) to our data and show that a GLMM performs better than a GLM in terms of information criteria. We also look at the predictability of our models in terms of the time-dependent receiver operating characteristic (ROC) and the area of ROC, i.e. AUC. We conclude that among the disability factors, IADL and among the diseases, cancer significantly affect the survival of the English population aged 50 and older.

Type
Research Paper
Copyright
Copyright © Université catholique de Louvain 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A. (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. (Vol. 55). US Government printing office.CrossRefGoogle Scholar
Aida, J., Cable, N., Zaninotto, P., Tsuboya, T., Tsakos, G., Matsuyama, Y., Ito, K., Osaka, K., Kondo, K., Marmot, M. G. and Watt, R. G. (2018) Social and behavioral determinants of the difference in survival among older adults in Japan and England. Gerontology 64(3), 266277.CrossRefGoogle ScholarPubMed
Allison, P. D. (1982) Discrete-time methods for the analysis of event histories. Sociological Methodology 13 6198.CrossRefGoogle Scholar
Antonio, K. and Valdez, E. A. (2012) Statistical aspects of a priori and a posteriori risk classification in insurance. Advances in Statistical Analysis 96(2), 187224.CrossRefGoogle Scholar
Antonio, K. and Zhang, Y. (2014) Predictive Modelling in Actuarial Science. New York: Cambridge University Press.Google Scholar
Azur, M. J., Stuart, E. A., Frangakis, C. and Leaf, P. J. (2011) Multiple imputation by chained equations: what is it and how does it work?. International Journal of Methods in Psychiatric Research 20(1), 4049.CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B. M. and Walker, S. C. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1), 148.CrossRefGoogle Scholar
Blake, M., Bridges, S., Hussey, D. and Mandalia, D. (2015) The Dynamics of Ageing: The 2010 English Longitudinal Study of Ageing (wave 5). London: NatCen Social Research.Google Scholar
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H. and White, J. S. S. (2009) Generalised linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24(3), 127135.CrossRefGoogle ScholarPubMed
Box, G. E. P. and Tiao, G. C. (1973) Bayesian Inference In Statistical Analysis. Philippines: Addison–Wesley publishing company.Google Scholar
Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalised linear mixed models. Journal of the American Statistical Association 88(421), 925.Google Scholar
Bridges, S., Hussey, D. and Blake, M. (2015) The dynamics of ageing: The 2012 English Longitudinal Study of Ageing (wave 6). London: NatCen Social Research.Google Scholar
Carter, P., Lagan, J., Fortune, C., Bhatt, D. L., Vestbo, J., Niven, R., Chaudhuri, N., Schelbert, E. B., Potluri, R. and Miller, C. A. (2019) Association of cardiovascular disease with respiratory disease. Journal of the American College of Cardiology 73(17), 21662177.CrossRefGoogle ScholarPubMed
Cox, D. R (1972) Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34(2), 187202.Google Scholar
Davidian, M. and Giltinan, D. M. (2003) Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural, Biological, and Environmental Statistics 8(4), 387419.CrossRefGoogle Scholar
Davies, K, Maharani, A., Chandola, T., Todd, C. and Pendleton, N. (2021) The longitudinal relationship between loneliness, social isolation, and frailty in older adults in England: a prospective analysis. The Lancet Healthy Longevity 2(2), e70e77.CrossRefGoogle ScholarPubMed
Demakakos, P., Biddulph, J. P., Bobak, M. and Marmot, M. G. (2016) Wealth and mortality at older ages: a prospective cohort study. Journal of Epidemiology and Community Health 70(4), 346353.CrossRefGoogle ScholarPubMed
Demakakos, P., Biddulph, J. P., Oliveira, C. de, Tsakos, G. and Marmot, M. G. (2018) Subjective social status and mortality: the English Longitudinal Study of Ageing. European Journal of Epidemiology 33(8), 729739.CrossRefGoogle ScholarPubMed
Donati, L., Fongo, D., Cattelani, L. and Chesani, F. (2019) Prediction of decline in activities of daily living through artificial neural networks and domain adaptation. In International Conference of the Italian Association for Artificial Intelligence, pp. 376–391. Springer, Cham.CrossRefGoogle Scholar
d'Orsi, E., Xavier, A. J., Steptoe, A., Oliveira, C. de, Ramos, L. R., Orrell, M., Demakakos, P. and Marmot, M. G. (2014) Socio-economic and lifestyle factors related to instrumental activity of daily living dynamics: results from the English Longitudinal Study of Ageing. Journal of the American Geriatrics Society 62(9), 16301639.CrossRefGoogle Scholar
Ebrahim, S., Wannamethee, G., McCallum, A., Walker, M. and Shaper, A. G. (1995) Marital status, change in marital status, and mortality in middle-aged British men. American Journal of Epidemiology 142(8), 834842.CrossRefGoogle ScholarPubMed
Fahrmeir, L. and Knorr-Held, L. (1997) Discrete-time duration models: estimation via Markov Chain Monte Carlo. Sociological Methodology 27(1), 417452.CrossRefGoogle Scholar
Frees, E. W. (2004) Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. London: Cambridge University Press.CrossRefGoogle Scholar
Friedman, M (1982) Piecewise exponential models for survival data with covariates. The Annals of Statistics 10(1), 101113.CrossRefGoogle Scholar
Gauffin, K. and Dunlavy, A. (2021) Health inequalities in the diverse world of self-employment: A Swedish national cohort study. International Journal of Environmental Research and Public Health 18(23), 12301.CrossRefGoogle ScholarPubMed
Gobbens, R. J. J. and van der Ploeng, T. (2020) The prediction of mortality by disability among Dutch community-dwelling older people. Clinical Interventions in Ageing 15 18971906.CrossRefGoogle ScholarPubMed
Gonçalves, J. and Martins, P. S. (2018) The effect of self-employment on health: evidence from longitudinal social security data. IZA Discussion Papers Series, 11305. RePEc:iza:izadps:dp11305.CrossRefGoogle Scholar
Guzman-Castillo, M., Ahmadi-Abhari, S., Bandosz, P., Capewell, S., Steptoe, A., Singh-Manoux, A., Kivimaki, M., Shipley, M. J., Brunner, E. J. and O'Flaherty, M. (2017) Forecasted trends in disability and life expectancy in England and Wales up to 2025: a modelling study. The Lancet Public Health 2(7), e307e313.CrossRefGoogle ScholarPubMed
Ham, J. C. and Rea, S. A. Jr (1987) Unemployment insurance and male unemployment duration in Canada. Journal of Labor Economics 5(3), 325353.CrossRefGoogle Scholar
Hanewald, K., Li, H. and Shao, A. W. (2019) Modelling multi-state health transitions in China: a generalised linear model with time trends. Annals of Actuarial Science 13(1), 145165.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R. and Friedman, J. H. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer.CrossRefGoogle Scholar
Heagerty, P. J. and Zheng, Y. (2005) Survival model predictive accuracy and ROC curves. Biometrics 61(1), 92105.CrossRefGoogle ScholarPubMed
Hewitt, J., Guerra, L. C., del Carmen Fernändez-Moreno, M. and Sierra, C. (2012) Diabetes and stroke prevention: A review. Stroke Research and Treatment 2012 16.CrossRefGoogle ScholarPubMed
Johnson, N. J., Backlund, E., Sorlie, P. D. and Loveless, C. A. (2000) Marital status and mortality: the national longitudinal mortality study. Annals of Epidemiology 10(4), 224238.CrossRefGoogle ScholarPubMed
Kabaila, P. and Ranathunga, N. (2019) On adaptive Gauss–Hermite quadrature for estimation in GLMM's. In Research School on Statistics and Data Science, pp. 130–139. Springer, Singapore.CrossRefGoogle Scholar
Kamarudin, A.N., Cox, T. and Kolamunnage-Dona, R. (2017) Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology 17(1), 119.CrossRefGoogle ScholarPubMed
Kessler, M., Thumë, E., Scholes, S., Marmot, M., Facchini, L. A., Nunes, B. P., Machado, K. P., Soares, M. U. and Oliveira, C. de (2020) Modifiable risk factors for 9-year mortality in older English and Brazilian adults: The ELSA and SIGa-Bagë ageing cohorts. Scientific Reports 10(1), 113.CrossRefGoogle ScholarPubMed
Khondoker, M., Rafnsson, S. B., Morris, S., Orrel, M. and Steptoe, A. (2017) Positive and negative experiences of social support and risk of dementia in later life: An investigation using the English Longitudinal Study of Ageing. Journal of Alzheimer's Disease 58, 99108.CrossRefGoogle ScholarPubMed
Lau, L.-H., Lew, J., Borschmann, K., Thijs, V. and Ekinci, E. I. (2019) Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. Journal of Diabetes Investigation 10(3), 780792.CrossRefGoogle ScholarPubMed
Lee, K. J. and Carlin, J. B. (2010) Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology 171(5), 624632.CrossRefGoogle ScholarPubMed
Li, Z., Shao, A. W. and Sherris, M. (2017) The impact of systematic trend and uncertainty on mortality and disability in a multi-state latent factor model for transition rates. North American Actuarial Journal 21(4), 594610.CrossRefGoogle Scholar
Lindström, M. and Rosvall, M. (2019) Marital status and 5-year mortality: A population-based prospective cohort study. Public Health 170 4548.CrossRefGoogle ScholarPubMed
Liu, D. C. and Nocedal, J. (1989) On the limited memory BFGS method for large scale optimisation. Mathematical Programming 45(1), 503528.CrossRefGoogle Scholar
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd Ed., Chapman and Hall.CrossRefGoogle Scholar
Mendy, A., Park, J. and Vieira, E. R. (2018) Osteoarthritis and risk of mortality in the USA: a population-based cohort study. International Journal of Epidemiology 47(6), 18211829.CrossRefGoogle Scholar
Morris, J. K., Cook, D. G. and Shaper, A. G. (1994) Loss of employment and mortality. The BMJ 308(6937), 11351139.CrossRefGoogle ScholarPubMed
Murphy, K. P. (2012) Machine Learning: A Probabilistic Perspective. England: The MIT Press.Google Scholar
Nash, J. C. and Varadhan, R. (2011) Unifying optimisation algorithms to aid software system users: optimx for R. Journal of Statistical Software 43(9), 114.CrossRefGoogle Scholar
Nelder, J. A. and Mead, R. (1965) A simplex method for function minimisation. The Computer Journal 7(4), 308313.CrossRefGoogle Scholar
Petersen, T (1986) Fitting parametric survival models with time-dependent covariates. Journal of the Royal Statistical Society: Series C (Applied Statistics) 35(3), 281288.Google Scholar
Pongiglione, B., De Stavola, B. L., Kuper, H. and Ploubidis, G. B. (2016) Disability and all-cause mortality in the older population: evidence from the English Longitudinal Study of Ageing. European Journal of Epidemiology 31(8), 735746.CrossRefGoogle ScholarPubMed
Pongiglione, B., Ploubidis, G. B. and De Stavola, B. L. (2017a) Levels of disability in the older population of England: Comparing binary and ordinal classifications. Disability and Health Journal 10(4), 509517.CrossRefGoogle ScholarPubMed
Pongiglione, B., Ploubidis, G. and Stavola, B. De (2017b) Disability-free life expectancy between 2002 and 2012 in England: trends differ across genders and levels of disability. International Population Conference. IUSSP.Google Scholar
Potente, C. and Monden, C. (2016) Pathways to death by socio-economic status. 2016 Annual Meeting. PAA.Google Scholar
Powell, M. J. D. (2009) The BOBYQA algorithm for bound constrained optimisation without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26.Google Scholar
Rafnsson, S.B., Orrell, M., d'Oris, E., Hogervorst, E. and Steptoe, A. (2020) Loneliness, social integration, and incident dementia over 6 years: Prospective findings from the English Longitudinal Study of Ageing. Journals of Gerontology: Series B 75(1), 114124.CrossRefGoogle ScholarPubMed
Ramezankhani, A., Azizi, F. and Hadaegh, F. (2019) Associations of marital status with diabetes, hypertension, cardiovascular disease and all-cause mortality: A long term follow-up study. PloS one 14(4), e0215593.CrossRefGoogle ScholarPubMed
Rendall, M. S., Weden, M. M., Faveault, M. M. and Waldron, H. (2011) The protective effect of marriage for survival: a review and update. Demography 48(2), 481506.CrossRefGoogle Scholar
Renshaw, A. E. and Haberman, S. (2000) Modelling the recent time trend in UK permanent health insurance recovery, mortality and claim inception transition intensities. Insurance: Mathematics and Economics 27(3), 365396.Google Scholar
Richayzen, B. D. and Walsh, D. E. P. (2002) A multi-state model of disability for the United Kingdom: implications for future need for long-term care for the elderly. British Actuarial Journal 8(2), 341393.CrossRefGoogle Scholar
Rios, L. M. and Sahinidis, N. V. (2013) Derivative-free optimisation: a review of algorithms and comparison of software implementations. Journal of Global Optimisation 56(3), 12471293.CrossRefGoogle Scholar
Scheike, T. H. and Jensen, T. K. (1997) A discrete survival model with random effects: an application to time to pregnancy. Biometrics 1997 318329.CrossRefGoogle Scholar
Scott, W. K., Macera, C. A., Cornman, C. B. and Sharpe, P. A. (1997) Fuctional health status as a predictor of mortality in men and women over 65. Epidemiology 50(3), 291296.Google Scholar
Sin, D. D. and Man, S. P. (2005) Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proceedings of the American Thoracic Society 2(1), 811.CrossRefGoogle ScholarPubMed
Singer, J. D. and Willet, J. B. (1993) It's about time: using discrete-time survival analysis to study duration and the timing of events. Journal of Educational Statistics 18(2), 155195.Google Scholar
Sorlie, P. D. and Rogot, E. (1990) Mortality by employment status in the national longitudinal mortality study. American Journal of Epidemiology 132(5), 983992.CrossRefGoogle ScholarPubMed
Stamate, D., Musto, H., Ajnakina, O. and Stahl, D. (2022) Predicting risk of dementia with survival machine learning and statistical methods: results on the English longitudinal study of ageing cohort. In IFIP International Conference on Artificial Intelligence Applications and Innovations, pp. 436–447. Cham: Springer.CrossRefGoogle Scholar
Steptoe, A., Breeze, E., Banks, J. and Nazroo, J. (2013) Cohort profile: the English longitudinal study of ageing. International Journal of Epidemiology 42(6), 16401648.CrossRefGoogle ScholarPubMed
Steptoe, A., Deaton, A. and Stone, A. A. (2015) Psychological wellbeing, health and ageing. Lancet 385(9968), 640.CrossRefGoogle Scholar
Steptoe, A. and Zaninotto, P. (2020) Lower socio-economic status and the acceleration of aging: An outcome-wide analysis. Proceedings of the National Academy of Sciences 117(26), 1491114917.CrossRefGoogle ScholarPubMed
Sullivan, D. F. (1971) A single index of mortality and morbidity. HSMHA health reports 86(4), 347.CrossRefGoogle ScholarPubMed
Thompson, W. A. Jr (1977) On the treatment of grouped observations in life studies. Biometrics 33(3), 463470.Google ScholarPubMed
Toivanen, S., Griep, R. H., Mellner, C., Vinberg, S. and Eloranta, S. (2016) Mortality differences between self-employed and paid employees: a 5-year follow-up study of the working population in Sweden. Occupational and Environmental Medicine 73(9), 627636.CrossRefGoogle ScholarPubMed
Torres, J. L., Lima-Costa, M. F., Marmot, M. and de Oliveira, C. (2016) Wealth and disability in later life: The English Longitudinal Study of Ageing (ELSA). PloS ONE 11(11), e0166825.CrossRefGoogle ScholarPubMed
Turkiewicz, A., Kiadaliri, A. A. and Englund, M. (2019) Cause-specific mortality in osteoarthritis of peripheral joints. Osteoarthritis and Cartilage 27(6), 848854.CrossRefGoogle ScholarPubMed
Tutz, G. and Schmid, M. (2016) Modelling discrete time-to-event data, Springer series in Statistics.CrossRefGoogle Scholar
van Buuren, S. (2018) Flexible Imputation of Missing Data. 2nd Ed. ed. FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
van Buuren, S. and Groothuis-Oudshoorn, K. (2011) mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45(3), 167.Google Scholar
Yang, Y., Du, Z., Liu, Y., Lao, J., Sun, X. and Tang, F. (2021) Disability and the risk of subsequent mortality in elderly: a 12-year longitudinal population-based study. BMC Geriatrics 21(1), 19.CrossRefGoogle ScholarPubMed